Theoretical bio-investigation of 3-(benzo[d]thiazol-2-yl)-2-(substituted aryl)thiazolidin-4-one derivatives as potential Mycobacterium tuberculosis H37Rv inhibitors
PDF

Keywords

Mycobacterium
anti-tuberculosis
in silico
docking
thiazolidin-4-one

How to Cite

Oke, D. G., Olalekan, O. A., Olujinmi, E. F., Aworinde, J. O., & Oyebamiji, A. K. (2025). Theoretical bio-investigation of 3-(benzo[d]thiazol-2-yl)-2-(substituted aryl)thiazolidin-4-one derivatives as potential Mycobacterium tuberculosis H37Rv inhibitors. Eclética Química, 50, e–1550. https://doi.org/10.26850/1678-4618.eq.v50.2025.e1550

Abstract

3-(Benzo[d]thiazol-2-yl)-2-((substituted aryl) thiazolidin-4-one derivatives were recently synthesized with thioglycolic acid and evaluated for in vitro anti-tubercular activity. Two of the derivatives have good anti-tubercular activity. The present study evaluated an in-silico investigation of these ten novel compounds as potential Mycobacterium tuberculosis H37Rv inhibitors. The non-bonding interactions between the derivatives and the receptor were studied. Spartan ‘14 software was used for optimization. Discovery Studio software was used for the receptor treatment. The binding site in the downloaded protein was located using Autodock Tool software. Auto Dock Vina was used to calculate the docking, and Discovery Studio was used to view the non-bonding interactions between the docked complexes. Different other parameters were calculated to describe anti-tubercular activities of 3-(benzo[d]thiazol-2-yl)-2-(substituted aryl)thiazolidin-4-one derivatives. The findings demonstrated the potential anti-tubercular properties of all the substances under study and inhibited Mycobacterium tuberculosis (H37Rv). The calculated binding affinity of the docked compound showed improved inhibition against Mycobacterium tuberculosis (H37Rv) better than the standard drugs (Streptomycin and Pyrazinamide), with compound 6 being the best.

https://doi.org/10.26850/1678-4618.eq.v50.2025.e1550
PDF

References

Abdul-Hammed, M.; Semire, B.; Adegboyega, S. A.; Oyebamiji, A. K.; Olowolafe, T. A. Inhibition of cyclooxygenase-2 and thymidylate synthase by dietary sphingomyelins: insights from DFT and Molecular docking studies. Phys. Chem. Res. 2020, 8 (2), 296–310. https://doi.org/10.22036/pcr.2020.214026.1717

Abdullahi, B. U.; Adamu, U.; Sani, U.; Gideon, A. S. QSAR and Docking Studies on Some Potential Anti-Cancer Agents to Predict their Efect on M14 Melanoma Cell Line. Chem. Afri. 2020, 3, 1009–1022. https://doi.org/10.1007/s42250-020-00185-w

Aziz, M. N.; Patel, A.; Iskander, A.; Chini, A.; Gout, D.; Mandal, S. S.; Lovely, C. J. One-Pot Synthesis of Novel 2-Imino-5-Arylidine-Thiazolidine Analogues and Evaluation of Their Anti-Proliferative Activity against MCF7 Breast Cancer Cell Line. Molecules. 2022a, 27 (3), 841. https://doi.org/10.3390/molecules27030841

Aziz, N. A. A. M.; George, R. F.; El-Adl, K.; Mahmoud, W. R. Design, synthesis, in silico docking, ADMET and anticancer evaluations of thiazolidine-2,4-diones bearing heterocyclic rings as dual VEGFR-2/EGFRT790M tyrosine kinase inhibitors. RSC Adv. 2022b, 12 (20), 12913–12931. https://doi.org/10.1039/D2RA01119K

Bahrami, K.; Khodaei, M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem. 2008, 73 (17), 6835–6837. https://doi.org/10.1021/jo8010232

Behr, M. A.; Edelstein, P. H.; Ramakrishnan, L. Is Mycobacterium tuberculosis infection life long? BMJ. 2019, 367, l5770. https://doi.org/10.1136/bmj.l5770

Bhoge, N.; Magare, B.; Mohite, P. Synthesis and Biological Evaluation of 3 (Benzo[d]Thiazol-2-yl)-2-(Substituted Aryl) Thiazolidin-4-one Derivatives. Letters in Applied NanoBioScience. 2024, 13 (1), 19. https://doi.org/10.33263/LIANBS131.019

Chandra, P.; Grigsby S. J.; Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2022, 20, 750–766. https://doi.org/10.1038/s41579-022-00763-4

Dernovšek, J.; Zajec, Ž.; Durcik, M.; Mašič, L. P.; Gobec, M.; Zidar, N.; Tomašič, T. Structure-Activity Relationships of Benzothiazole-Based Hsp90 C-Terminal-Domain Inhibitors. Pharmaceutics. 2021, 13 (8), 1283. https://doi.org/10.3390/pharmaceutics13081283

Dookie, N.; Ngema, S. L.; Perumal, R.; Naicker, N.; Padayatchi, N.; Naidoo, K. The changing paradigm of drug-resistant tuberculosis treatment: successes, pitfalls, and future perspectives. Clin. Microbiol. Rev. 2022, 35 (4), e0018019. https://doi.org/10.1128/cmr.00180-19

Fadare, R. I.; Akpor, O. A.; Ifechukwude, I. G.; Richard, D. A.; Bello, C. B. Nurses’ Safety in Caring for Tuberculosis Patients at a Teaching Hospital in South-West Nigeria. Environ. Public Health. 2020, 2020, 3402527. https://doi.org/10.1155/2020/3402527

Ferrer, N. L.; Gómez, A. B.; Soto, C. Y.; Neyrolles, O.; Gicquel, B.; García-Del, Portillo F, Martín C. Intracellular replication of attenuated Mycobacterium tuberculosis phoP mutant in the absence of host cell cytotoxicity. Microbes Infect. 2009, 11 (11), 115–122. https://doi.org/10.1016/j.micinf.2008.10.013

Froes, T. Q.; Chaves, B. T.; Mendes, M. S.; Ximenes, R. M.; da Silva, I. M.; da Silva, P. B. G.; de Albuquerque, J. F. C.; Castilho, M. S. Synthesis and biological evaluation of thiazolidinedione derivatives with high ligand efficiency to P. aeruginosa PhzS. J. Enzyme Inhib. Med. Chem. 2021, 36 (1), 1217–1229. https://doi.org/10.1080/14756366.2021.1931165

Haider, K.; Rehman, S.; Pathak, A.; Najmi, A. K.; Yar, M. S. Advances in 2-substituted benzothiazole scaffold-based chemotherapeutic agents. Arch Pharm. 2021, 354 (12), e2100246. https://doi.org/10.1002/ardp.202100246

Haider, K.; Shrivastava, N.; Pathak, A.; Prasad, Dewa R.; Yahya, S.; Shahar Yar, M. Recent advances and SAR study of 2-substituted benzothiazole scaffold based potent chemotherapeutic agents. Results Chem. 2022, 4, 100258. https://doi.org/10.1016/j.rechem.2021.100258

Kumar, S.; Rathore, D.; Garg, G.; Khatri, K.; Saxena, R.; Sahu, S. K. Synthesis and Evaluation of Some Benzothiazole Derivatives as Antidiabetic Agents. Int. J. Pharm. Pharm. Sci. 2017, 9 (2), 60–68. https://doi.org/10.22159/ijpps.2017v9i2.14359

Lawson, H. D.; Walton, S. P.; Chan, C. Metal–organic frameworks for drug delivery: a design perspective. ACS Appl. Mater. Interfaces. 2021, 13 (6), 7004–7020. https://doi.org/10.1021/acsami.1c01089

Lerner, T. R.; Queval, C. J.; Lai, R. P.; Russell, M. R. G.; Fearns, A.; Greenwood, D. J.; Collinson, L.; Wilkinson, R. J.; Gutierrez, M. G. Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight. 2020, 5 (10), e136937. https://doi.org/10.1172/jci.insight.136937

Levshin, I. B.; Simonov, A. Y.; Lavrenov, S. N.; Panov, A. A.; Grammatikova, N. E.; Alexandrov, A. A.; Ghazy, E. S. M. O.; Savin, N. A.; Gorelkin, P. V.; Erofeev, A. S.; Polshakov, V. I. Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners. Pharmaceuticals (Basel). 2022, 15 (5), 563. https://doi.org/10.3390/ph15050563

Lewis, D. F. V.; Broughton, H. B. Molecular binding interactions: their estimation and rationalization in QSARs in terms of theoretically derived parameters. Sci. World J. 2002, 2 (1), 1654–1660. https://doi.org/10.1100/tsw.2002.343

Lončarić, M.; Strelec, I.; Pavić, V.; Rastija, V.; Karnaš, M.; Molnar, M. Green Synthesis of Thiazolidine-2,4-dione Derivatives and Their Lipoxygenase Inhibition Activity with QSAR and Molecular Docking Studies. Front. Chem. 2022, 10, 912822. https://doi.org/10.3389/fchem.2022.912822

Menzies, N. A.; Wolf, E.; Connors, D.; Bellerose, M.; Sbarra, A. N.; Cohen, T.; Hill, A. N.; Yaesoubi, R.; Galer, K.; White, P. J.; Abubakar, I.; Salomon, J. A. Progression from latent infection to active disease in dynamic tuberculosis transmission models: a systematic review of the validity of modelling assumptions. Lancet Infect Dis. 2018, 18 (8), e228–e238. https://doi.org/10.1016/S1473-3099(18)30134-8

Moodley, R.; Mashaba, C.; Rakodi, GH.; Ncube, N. B.; Maphoru, M. V.; Balogun, M. O.; Jordan, A.; Warner, D. F.; Khan, R.; Tukulula, M. New Quinoline-Urea-Benzothiazole Hybrids as Promising Antitubercular Agents: Synthesis, In Vitro Antitubercular Activity, Cytotoxicity Studies, and In Silico ADME Profiling. Pharmaceuticals. 2022, 5 (5), 576. https://doi.org/10.3390/ph15050576

Moule, M. G.; Cirillo, J. D. Mycobacterium tuberculosis Dissemination Plays a Critical Role in Pathogenesis. Front. Cell. Infect. Microbiol. 2020, 10, 65. https://doi.org/10.3389/fcimb.2020.00065

Nasr, A. Z.; Farahat, A.; Zein, M. A.; Abdelrehim, E. Synthesis and Antimicrobial Activity of 1,3,4-Oxadiazoline, 1,3-Thiazolidine, and 1,2,4-Triazoline Double-Tailed Acyclo. C-Nucleosides. ACS Omega. 2022, 7 (20), 16884–16894. https://doi.org/10.1021/acsomega.1c06339

Oladipo, S. D.; Tolufashe, G. F.; Mocktar, C.; Omondi, B. Ag(I) symmetrical N, N′-diarylformamidine dithiocarbamate PPh3 complexes: Synthesis, structural characterization, quantum chemical calculations and in vitro biological studies. Inorganica Chim. Acta. 2021, 520, 120316. https://doi.org/10.1016/j.ica.2021.120316

Olasupo, S. B.; Uzairu, A.; Shallangwa, G. A.; Uba, S. Computer-aided drug design and in silico pharmacokinetics predictions of some potential antipsychotic agents. Sci. Afri. 2021, 12, e00734. https://doi.org/10.1016/j.sciaf.2021.e00734

Olujinmi, F. E.; Aworinde, J. O.; Oke, D. G.; Olalekan, O.; Oyebamiji, A. K. Biochemical Evaluation of Potential Antibacterial Activities of (2, 6-Diethylphenyl)-5-Oxopyrrolidine Derivatives via In-Silico Study. Journal of Hunan University Natural Sciences. 2024, 51 (7), 169–177. https://doi.org/10.55463/issn.1674-2974.51.7.16

Oyebamiji, K. A.; Semire, B. Studies of 1, 4-Dihydropyridine Derivatives for Anti-Breast Cancer (MCF-7) Activities: Combinations of DFT-QSAR and Docking Methods. New York Science Journal. 2016, 9 (6), 58-66. https://doi.org/10.7537/marsnys09061610

Oyebamiji, A. K.; Banjo, S. In Vitro Biological Estimation of 1,2,3-Triazolo[4,5-d]pyrimidine Derivatives as Anti-breast Cancer Agent: DFT, QSAR and Docking Studies. Curr. Pharm. Biotechnol. 2020, 21 (1), 70–78. https://doi.org/10.2174/1389201020666190904163003

Oyebamiji, A. K.; Akintelu, A. S.; Mutiu, O. A.; Adeosun, I. J.; Kaka, M. O.; Olotu, T. M.; Soetan, A. E.; Adelowo, J. M.; Semire, B. In-Silico Study on Anti-cancer Activity of Selected Alkaloids from Catharanthus roseus. Trop. J. Nat. Prod. Res. 2021, 5 (7), 1315–1322. https://doi.org/10.26538/tjnpr/v5i7.25

Oyebamiji, A. K.; Olujinmi, F. E.; Aworinde, H. O.; Oke, D. G.; Akintelu, S. A.; Akintayo, E. T.; Akintayo, C. O.; Babalola, J. O. Dataset on anti-human insulin-degrading enzyme activities of cyclic tetra peptides: Insight from in silico approach. Data in Brief. 2024, 55, 110724. https://doi.org/10.1016/j.dib.2024.110724.

Oyebamiji, A.K.; Akintelu; S.A.; Bello-Ogunesan, K.O.; Afolabi, S.O.; Adegoke, K.A; Ebenezer, O.; Akintayo, C.O.; Akintayo, E.T. Mucuna pruriens (L.)- A Potential Phospholipase A2 Inhibitor: In silico Approach. Letter in Applied Nanobioscience, 2025, 14 (3), 195. https://doi.org/10.33263/LIANBS143.195

Oyewole, R. O.; Oyebamiji, A. K.; Semire, B. Theoretical calculations of molecular descriptors for anticancer activities of 1, 2, 3-triazole-pyrimidine derivatives against gastric cancer cell line (MGC-803): DFT, QSAR and docking approaches. Heliyon. 2020, 6 (5), e03926. https://doi.org/10.1016/j.heliyon.2020.e03926

Ren, Y.-S.; Li, H.-L.; Piao, X.-H.; Yang, Z.-Y.; Wang, S.-M.; Ge, Y.-W. Drug affinity responsive target stability (DARTS) accelerated small molecules target discovery: Principles and application. Biochem. Pharmacol. 2021, 194, 114798. https://doi.org/10.1016/j.bcp.2021.114798

Salina, E. G.; Postiglione, U.; Chiarelli, L. R.; Recchia, D.; Záhorszká, M.; Lepioshkin, A.; Monakhova, N.; Pál, A.; Porta, A.; Zanoni, G.; Korduláková, J.; Kazakova, E.; Sassera, D.; Pasca, M. R.; Makarov, V.; Degiacomi, G. A New Benzothiazolthiazolidine Derivative, 11726172, Is Active In Vitro, In Vivo, and against Nonreplicating Cells of Mycobacterium tuberculosis. mSphere. 2022, 7 (6), e00369-22. https://doi.org/10.1128/msphere.00369-22

Setiabudiawan, T. P.; Reurink, R. K.; Hill, P. C.; Netea, M. G.; van Crevel, R.; Koeken, V. A. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: A historical perspective. Med. 2022, 3 (1), 6–24. https://doi.org/10.1016/j.medj.2021.11.006

Shainyan, B. A.; Zhilitskaya, L. V.; Yarosh, N. O. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. Molecules. 2022, 27 (8), 2598. https://doi.org/10.3390/molecules27082598

Shen, J.; Cheng, F.; Xu, Y.; Li, W.; Tang, Y. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model. 2010, 50 (6), 1034–1041. https://doi.org/10.1021/ci100104j

Stremski, Y.; Statkova-Abeghe, S.; Kirkova, D.; Angelov, P.; Ivanov, I. Synthesis and structure of new benzothiazole hybrids as potential anticancer agents. Journal of International Scientific Publications. 2021, 15, 173–187.

Sucheta, T. S.; Verma, P. K. Biological potential of thiazolidinedione derivatives of synthetic origin. Chemistry Central Journal. 2017, 11, 130. https://doi.org/10.1186/s13065-017-0357-2

Swalehe, H. M.; Obeagu, E. I. Tuberculosis: Current Diagnosis and Management. Elite Journal of Public Health. 2024, 2 (1), 23–33.

Taghour, M. S.; Elkady, H.; Eldehna, W. M.; El-Deeb, N. M.; Kenawy, A. M.; Elkaeed, E. B.; Alsfouk, A. A.; Alesawy, M. S.; Metwaly, A. M.; Eissa, I. H. Design and synthesis of thiazolidine-2,4-diones hybrids with 1,2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: in-vitro anticancer evaluation and in-silico studies. J. Enzyme. Inhib. Med. Chem. 2022, 37, 1903–1917. https://doi.org/10.1080/14756366.2022.2085693

Tian, Q.; Quan, P.; Fang, L.; Xu, H.; Liu, C. A molecular mechanism investigation of the transdermal/topical absorption classification system on the basis of drug skin permeation and skin retention. Int. J. Pharm. 2021, 608, 121082. https://doi.org/10.1016/j.ijpharm.2021.121082

Trajman, A.; Felker, I.; Alves, L. C.; Coutinho, I.; Osman, M.; Meehan, S. A.; Singh, U. B.; Schwartz, Y. The COVID-19 and TB syndemic: the way forward. Int. J. Tuberc. Lung Dis. 2022, 26 (8), 710–719. https://doi.org/10.5588/ijtld.22.0006

Trotsko, N.; Golus, J.; Kazimierczak, P.; Paneth, A.; Przekora, A.; Ginalska, G.; Wujec, M. Design, synthesis and antimycobacterial activity of thiazolidine-2,4-dione-based thiosemicarbazone derivatives. Bioorganic Chemistry. 2020, 97, 103676. https://doi.org/10.1016/j.bioorg.2020.103676

Trott, O.; Olson, A. J. Autodock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010, 31 (2), 455–461. https://doi.org/10.1002/jcc.21334

Umeokonkwo, C. D.; Okedo-Alex, I. N.; Azuogu, B. N.; Utulu, R, Adeke AS, Disu YO. Trend and determinants of tuberculosis treatment outcome in a tertiary hospital in Southeast Nigeria. J. Infect. Public. Health. 2020, 13 (7), 1029–1033. https://doi.org/10.1016/j.jiph.2019.10.012

World Health Organization (WHO). Strategic and Technical Advisory Group for Tuberculosis (STAG-TB): report of the 21st meeting, 21–23, 2021. Geneva, Switzerland. World Health Organization. https://apps.who.int/iris/handle/10665/351132 (accessed 2021-12-31).

World Health Organization (WHO). Global Tuberculosis Report 2021. Geneva, Switzerland. World Health Organization. https://www.who.int/publications/i/item/9789240037021 (accessed 2022-09-22).

World Health Organization (WHO). WHO Global Task Force on TB Impact Measurement: report of a subgroup meeting on methods used by WHO to estimate TB disease burden, 11-12 May 2022, Geneva, Switzerland. World Health Organization. https://iris.who.int/items/27b1c68a-efd3-48d8-8343-c6d0cb90afd8 (accessed 2022-10-10).

Zhilitskaya, L. V.; Shainyan, B. A.; Yarosh, N. O. Modern Approaches to the Synthesis and Transformations of Practically Valuable Benzothiazole Derivatives. Molecules. 2021, 26 (8), 2190. https://doi.org/10.3390/molecules26082190

Zhilitskaya, L. V.; Yarosh, N. О. Synthesis of biologically active derivatives of 2-aminobenzothiazole. Chem. Heterocycl. Compd. 2021, 57, 369–373. https://doi.org/10.1007/s10593-021-02914-6

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Eclética Química

Metrics

Metrics Loading ...