Solving Schrödinger equation for two dimensional potentials using supersymmetry
PDF (English)

Palavras-chave

Quantum mechanics
Supersymmetry
Bidimensional systems
Schrödinger equation

Como Citar

Drigo Filho, E. (1997). Solving Schrödinger equation for two dimensional potentials using supersymmetry. Eclética Química, 22(1), 67–73. https://doi.org/10.26850/1678-4618eqj.v22.1.1997.p67-73

Resumo

The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.

https://doi.org/10.26850/1678-4618eqj.v22.1.1997.p67-73
PDF (English)

Referências

ADHIKARI, R., DUTT, R., VARSHNI, Y.P. On the averaging of energy eigenvalues in the supersymmetric WkB Method. Phys. Lett., v.A131, p.217, 1988. [ Links ]

BOSHI-FILHO, H., SOUZA, M., VAIDYA, A.N. General potentials described by so (2,1) dynamical algebra in parabolic coordinate systems. J. Phys., v.A24, p.4981, 1991. [ Links ]

DRIGO FILHO, E. Supersymmetric quantum mechanics and two-dimensional systems. Braz. J. Phys., v.22, p.45, 1992. [ Links ]

DRIGO FILHO, E. Supersymmetric solution for two-dimensional schrödinger equation. Mod. Phys. Lett., v.A8, p.63, 1993. [ Links ]

DRIGO FILHO, E., RICOTTA, R.M. Supersymmetry, variational method and hulthén potential. Mod. Phys. Lett., v.A10, p.1613, 1995. [ Links ]

GEDENSHTEIN, L.E., KRIVE, I.V. Supersymmetry in quantum mechanics Sov. Phys. USP, v. 28, p.645, 1985. [ Links ]

GERRY, C.C. Dinamical group for ring potential. Phys. Lett., v.All8, p.445, 1986. [ Links ]

NIETO, M.M. Relationship between supersymmetry and the inverse method in quantum mechanics. Phys. Lett., v.B145, p.208, 1984. [ Links ]ALVES, N.A., DRIGO FILHO, E. The factorisation method and supersymmetry. J. Phys., v.A21, p.3215, 1988. [ Links ]

SHIFMAN, M.A. Supersymmetric quantum mechanics and partial algebraization of the spectral problem. Int. J. Mod. Phys., v.A4, p.3305; 1989. [ Links ]DRIGO FILHO, E., RICOTTA, R.M. Supersymmetric quantum mechanics and higber exited states of a non-polynomial potential. Mod. Phys. Lett. v.A4, p.2283, 1989. [ Links ]

SUKUMAR, C.V. Supersymmetric quantum mechanics of one-dimensional systems J. Phys. v.A18, p. 2917, 1985. [ Links ]

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química

Métricas

Carregando Métricas ...