Thermal behavior of alginic acid and its sodium salt
PDF

Keywords

alginic acid
thermogravimetry
differential scanning calorimetry

How to Cite

Soares, J. da P., dos Santos, J. E., Chierice, G. O., & Cavalheiro, Éder T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29(2), 57–63. https://doi.org/10.26850/1678-4618eqj.v29.2.2004.p57-63

Abstract

An evaluation of hydration and thermal decomposition of HAlg and its sodium salt is
described using thermogravimetry (TG) and differential scanning calorimetry (DSC). TG curves in
N 2 and air, were obtained for alginic acid showed two decomposition steps attributed to loss of water
and polymer decomposition respectively. The sodium alginate decomposed in three steps. The first
attributed to water loss, followed by the formation of a carbonaceous residue and finally the Na 2 CO 3 .
DSC curves presented peaks in agreement with the TG data. In the IR alginic acid presented bands at
1730 and 1631 cm -1 , while sodium alginate presented a doublet at 1614 e 1431 cm -1 , evidencing the
presence of salified carboxyl groups.
https://doi.org/10.26850/1678-4618eqj.v29.2.2004.p57-63
PDF

References

X. Liu, L. Qian, T. Shu, Z. Tong, Polym. 44

(2003) 407.

T. A. Davis, B. Volesky, A. Mucci, Water Res.

( 2003) 4311.

C. Jeon, J. Y. Park, Y. J. Yoo, Water Res. 36

(2002) 1814.

A. Haug, B. Larsen, Acta Chem. Scand. 16

(1962) 1908.

G. O. Aspinall, The polysaccharides, Academic

Press, New York, 1983, vol. 2.

S. Oerther, E. Payan, F. Lapicque, N. Presle,

P. Hubert, S. Muller, P. Netter, Biochim. Biophys.

Acta 185 (1999) 1426.

K. Nakamura, E. Kinoshita, T. Hatakeyama,

H. Hatakeyama, Thermochim. Acta 171 (2000)

A. I. Usov, Russ. Chem. Rev. 68 (1999) 957.

A. Ikeda, A. Takemura, H. Ono, Carbohydr.

Polym. 42 (2000) 421.

T. W. Wong, L. W. Chan, S. B. Kho, P. W. S.

Heng, J. Controlled Release 84 (2002) 99.

D. F. Othmer, R. E. Kirk, Encyclopedia of

Chemical Technology, John Wiley, New York,

rd., 1980.

k. Nakamura, Y. Nishimura, H. Hatakeyama,

T. Hatakeyama, Thermochim. Acta 267 (1995)

T. Hatakeyama, H. Hatakeyama, K.

Nakamura, Thermochim. Acta 253 (1995) 137.

A. A. Said, M. M. M. Abd El-Whab, R. M.

Hassan, Thermochim. Acta 233 (1994) 13.

R. Y. M. Huang, R. Pal, G. Y. Moon, J.

Membrane Sci. 160 (1999) 101.

C. K. Yeom, K. H. Lee, J. Appl. Polym. Sci.

(1998) 209.

N. P. Chandía, B. Matsuhiro, A. E. Vásquez,

Carbohydr. Polym. 46 (2001) 81.

E. T. G. Cavalheiro, M. Ionashiro, S. T.

Brevigliere, G. Marino, G. O. Chierice, Quim.

Nova 18 (1995) 305.

W. W. Wendlandt, Thermal Methods of

Analysis, John Wiley. New York, 3rd., 1986.

A. E. Newkirk, I. Aliferis, Anal. Chem. 30

(1958) 982.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
231
Jan 2005Jul 2005Jan 2006Jul 2006Jan 2007Jul 2007Jan 2008Jul 2008Jan 2009Jul 2009Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202629
|