Resumo
Esta pesquisa quase experimental procura examinar o impacto do modelo de Aprendizagem Baseada em Projetos (PBL) integrado com Química Verde (GC) nas habilidades de pensamento crítico (CTA) e sensibilidade ambiental (ES) dos alunos em equilíbrio químico. Um desenho aleatório de pós-teste apenas com grupo de controle foi usado em quatro turmas de alunos da Classe XI F da SMAN 1 Gowa, Sulawesi do Sul, como população. As amostras foram as turmas XI F1 e XI F4, cada uma composta por 36 alunos, selecionados aleatoriamente. Os dados de CTA foram obtidos com sete questões dissertativas que foram testadas com confiabilidade bastante alta (0,68). O questionário ES consiste em 25 afirmações. Testes com o teste t de amostra independente mostram que o modelo PBL GC integrado influencia o aumento do CTA dos alunos. Os resultados do teste de Wilcoxon também mostram que a aplicação do modelo PBL integrado ao GC afeta o aumento da ES dos alunos. Esta pesquisa sugere que se espera que os professores continuem a integrar a química verde na aprendizagem de forma contínua para apoiar programas de sustentabilidade.
Referências
Abdurrahman, A.; Setyaningsih, C. A.; Jalmo, T. Implementating multiple representation-based worksheet to develop critical thinking skills. J. Tur. Sci. Educ. 2019, 16 (1), 138–155. https://www.researchgate.net/publication/332875201
Abrami, P.; Bernard, R.; Borokhovski, E.; Waddington, D.; Wade, C.; Persson, T. Strategies for Teaching Students to Think Critically. Rev. of Educ. Res. 2015, 85, 275–314. https://doi.org/10.3102/0034654314551063
Almulla, M. The Effectiveness of the Project-Based Learning (PBL) Approach as a Way to Engage Students in Learning. SAGE Open. 2020, 1–15. https://doi.org/10.1177/2158244020938702
Amin, S.; Sumarmi, S.; Bachri, S.; Susilo, S.; Mkumbachi, R. L.; Ghozi, A. Improving Environmental Sensitivity through Problem Based Hybrid Learning (PBHL): An Experimental Study. J. Pend. IPA Ind. 2022, 11 (3), 387–398. https://doi.org/10.15294/jpii.v11i3.38071
Amin, S.; Utaya, S.; Bachri, S.; Sumarmi, S.; Susilo, S. Effect of problem-based learning on critical thinking skills and environmental attitude. J. Educ. Gif. Yo. Sci. 2020, 8 (2), 743–755. https://doi.org/10.17478/jegys.650344
Anderson, L. W.; Krathwohl, D. R. A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. Longman, 2001.
Aubrecht, K. B.; Bourgeois, M.; Brush, E. J.; MacKellar, J.; Wissinger, J. E. Integrating Green Chemistry in the Curriculum: Building Student Skills in Systems Thinking, Safety, and Sustainability. J. Chem. Educ. 2019, 96, 2872−2880. https://doi.org/10.1021/acs.jchemed.9b00354
Bala, R.; Singh, S.; Sharma, K. Relationship between environmental knowledge, environmental sensitivity, environmental attitude and environmental behavioural intention – a segmented mediation approach. Man. Env. Qua.: Int. J. 2023, 34 (1), 119–136. https://doi.org/10.1108/MEQ-08-2021-0202
Basri, H.; Purwanto, P.; As’ari, A. R.; Sisworo, S. Investigating critical thinking skill of junior high school in solving mathematical problem. Int. J. Ins. 2019, 12 (3), 745–758. https://doi.org/10.29333/iji.2019.12345a
Chen, M.; Jeronen, E.; Wang, A. What Lies Behind Teaching and Learning Green Chemistry to Promote Sustainability Education? A Literature Review. Int. J. Environ. Res. Public. Health. 2020, 17 (21), 7876. https://doi.org/10.3390/ijerph17217876
Coleman, A. B.; Lorenzo, K.; McLamb, F.; Sanku, A.; Khan, S.; Bozinovic, G. Imagining, designing, and interpreting experiments: using quantitative assessment to improve instruction in scientific reasoning. Bio. Mol. Bio. Educ. 2023, 51 (3), 286–301. https://doi.org/10.1002/bmb.21727
Coll, R. K.; Ali, S.; Bonato, J.; Rohindra, D. Investigating first-year chemistry learning difficulties in the south pacific: a case study from Fiji. Int. J. Sci. Math. Educ. 2006, 4 (3), 365–390. https://doi.org/10.1007/s10763-005-9007-6
Cortázar, C.; Nussbaum, M.; Harcha, J.; Alvares, D.; López, F.; Goñi, J.; Cabezas, V. Promoting critical thinking in an online, project-based course. Comput. Human. Behav. 2021, 119, 106705. https://doi.org/10.1016/j.chb.2021.106705
Domenici, V. Steam project-based learning activities at the science museum as an effective training for future chemistry teachers. Educ. Sci. 2022, 12 (1), 30. https://doi.org/10.3390/educsci12010030.
Ennis, R. H. Critical Thinking Across the Curriculum: A Vision. Topoi, 2018, 37, 165–184. https://doi.org/10.1007/s11245-016-9401-4
Ennis, R. H. Critical Thinking: A streamlined conception. In: The palgrave handbook of critical thinking in higher education. Davies, M.; Barnett, R. (Eds.), Palgrave Macmillan, 2015; pp. 31–47. https://doi.org/10.1057/9781137378057_2
Facione, P. A. Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction (Research findings and recommendations). Millbrae, CA: California Academic Press. (ERIC Doc. No. ED315423). 1990.
Gregory, R. J. Psychological testing: history, principles, and applications. Pearson Education Group, Inc., 2007.
Grossman, P. G.; Dean, C. G. P.; Kavanagh, S. S.; Herrmann, Z. Preparing teachers for project-based teaching. Phi Delta Kappan. 2019, 100 (7), 43–48. https://doi.org/10.1177/0031721719841338
Hall, C.; Barnes, M. Inference Instruction to Support Reading Comprehension for Elementary Students with Learning Disabilities. Interv. Sch. Clin. 2016, 52 (5), 279–286. https://doi.org/10.1177/1053451216676799
Hanifha, S.; Erna, M.; Noer, A. M.; Talib, C. A. Socioscientific Issue-Based Undergraduate Student Worksheets on Scientific Literacy and Environmental Awareness. J. Pend. IPA Ind. 2023, 12 (4), 504–513. https://doi.org/10.15294/jpii.v12i4.45817
Hartmann, S.; Belzen, A.; Krüger, D.; Pant, H. Scientific reasoning in higher education. Zeitschrift Für Psychologie. 2015, 223 (1), 47–53. https://doi.org/10.1027/2151-2604/a000199
Huber, C.; Kuncel, N. Does College Teach Critical Thinking? A Meta-Analysis. Rev. Educ. Res. 2016, 86, 431–468. https://doi.org/10.3102/0034654315605917
Hyytinen, H.; Toom, A.; Postareff, L. Unraveling the complex relationship in critical thinking, approaches to learning and self-efficacy beliefs among first-year educational science students. Lear. Ind. Dif. 2018, 67, 132–142. https://doi.org/10.1016/J.LINDIF.2018.08.004
Issa, H. B.; Khataibeh, A. The Effect of Using Project-Based Learning on Improving the Critical Thinking among Upper Basic Students from Teachers’ Perspectives. Pegem J. Educ. Instruc. 2021, 11 (2), 52–57.
Jansson, S.; Söderström, H.; Andersson, P.; Nording, M. Implementation of problem-based learning in environmental chemistry. J. Chem. Educ. 2015, 92 (12), 2080–2086. https://doi.org/10.1021/ed500970y
Jusniar, J.; Syamsidah, S.; Army, A. Development of Environmental Sensitivity Instruments (Esi) Based on Green Chemistry Principles (Gcp) For Chemistry Learning in High Schools. Journal of Law and Sustanaible Development. 2023, 11 (12), e2003. https://doi.org/10.55908/sdgs.v11i12.2003
Khalid, L.; Bucheerei, J.; Issah, M. Pre-Service Teachers’ Perceptions of Barriers to Promoting Critical Thinking Skills in the Classroom. AGE Open. 2021, 11 (3). https://doi.org/10.1177/21582440211036094
Koulougliotis, D.; Antonoglou, L.; Salta, K. Probing Greek secondary school students’ awareness of green chemistry principles infused in context-based projects related to socio-scientific issues. Int. J. Sci. Educ. 2021, 43 (2), 298–313. https://doi.org/10.1080/09500693.2020.1867327
Krulik, S., & Rudnick, J. A. (1995). The new sourcebook for teaching reasoning and problem solving in elementary school. Allyn & Bacon. ISBN 0-205-14826-3.
Kyriakopoulos, G.; Ntanos, S.; Asonitou, S. Investigating the environmental behavior of business and accounting university students. Int. J. Sustain. High. Educ. 2020, 21, 819–839. https://doi.org/10.1108/ijshe-11-2019-0338
López, J.; Palacios, F. Effects of a Project-Based Learning Methodology on Environmental Awareness of Secondary School Students. Int. J. Ins. 2024, 17 (1), 1–22. https://doi.org/10.29333/iji.2024.1711a
Mebert, L.; Barnes, R.; Dalley, J.; Gawarecki, L.; Ghazi-Nezami, F.; Shafer, G.; Slater, J.; Yezbick, E. Fostering student engagement through a real-world, collaborative project across disciplines and institutions. Hig. Educ. Peda. 2020, 5, 30–51. https://doi.org/10.1080/23752696.2020.1750306
Minan, M.; Saputro, S.; Budi, S.; Suranto, S. Student’s Critical Thinking Skills Through Discovery Learning Model Using E-Learning on Environmental Change Subject Matter. Eur. J. Educ. Res. 2021, 1123–1135. https://doi.org/10.12973/EU-JER.10.3.1123
Mitarlis, M.; Azizah, U.; Yonata, B. The Integration of Green Chemistry Principles in Basic Chemistry Learning to Support Achievement of Sustainable Development Goals (SDGs) through Education. J. Tech. Sci. Educ. 2023, 13 (1), 233–254. https://doi.org/10.3926/jotse.1892
Mora, H.; Pont, M.; Guilló, A.; Pertegal-Felices, M. A collaborative working model for enhancing the learning process of science & engineering students. Comput. Hum. Behay. 2020, 103, 140–150. https://doi.org/10.1016/j.chb.2019.09.008
Pahrudin, A.; Misbah, M.; Alisia, G.; Saregar, A.; Asyhari, A.; Anugrah, A.; Endah, N. The Effectiveness of Science, Technology, Engineering, and Mathematics-Inquiry Learning for 15-16 Years Old Students Based on K-13 Indonesian Curriculum: The Impact on the Critical Thinking Skills. Eur. J. Educ. Res. 2021, 10, 681–692. https://doi.org/10.12973/EU-JER.10.2.681
Paul, R. W.; Elder, L. The thinkers` guide to engineering reasoning; CA: The Foundation for Critical Thinking, 2008.
Pluess, M. Individual Differences in Environmental Sensitivity. Chi. Dev. Pers. 2015, 9, 138–143. https://doi.org/10.1111/CDEP.12120
Pols, C. F. J.; Dekkers, P. J. J.; Vries, M. J. What do they know? Investigating students’ ability to analyse experimental data in secondary physics education. Int. J. Sci. Educ. 2021, 43, 274–297. https://doi.org/10.1080/09500693.2020.1865588
Purwanto, A.; Rahmawati, Y.; Rahmayanti, N.; Mardiah, A.; Amalia, R. Socio-critical and problem-oriented approach in environmental issues for students’ critical thinking skills development in Chemistry learning. J. Tech. Sci. Educ. 2022, 12 (1) 50–67. https://doi.org/10.3926/jotse.1341
Rimienė, V. Assessing and developing students’ critical thinking. Psy. Lear Teach. 2002, 2 (1), 17–22. https://doi.org/10.2304/plat.2002.2.1.17
Sarwanto, S.; Fajari, L. E. W.; Chumdari, C. Critical Thinking Skills and Their Impacts on Elementary School Students. Malays. J. Learn. Instruc. 2021, 18 (2) 161–188. https://doi.org/10.32890/mjli2021.18.2.6
Shanta, S.; Wells, J. T/E design-based learning: assessing student critical thinking and problem-solving abilities. Int. J. Tech. Des. Educ. 2020, 32, 267–285. https://doi.org/10.1007/s10798-020-09608-8
Situmorang, M.; Purba, J.; Silaban, R. Implementation of an Innovative Learning Resource with Project to Facilitate Active Learning to Improve Students’ Performance on Chemistry. Ind. J. Phar. Educ. Res. 2020, 54 (4), 905–914. https://doi.org/10.5530/ijper.54.4.184
Solihati, N.; Hikmat, A. Critical Thinking Tasks Manifested in Indonesian Language Textbooks for Senior Secondary Students. SAGE Open. 2018, 8 (3), 1–8. https://doi.org/10.1177/2158244018802164
Suradika, A.; Dewi, H.; Nasution, M. Project-Based Learning and Problem-Based Learning Models in Critical and Creative Students. J. Pend. IPA Ind. 2023, 12 (1) 153–167. https://doi.org/10.15294/jpii.v12i1.39713
Sutama, S.; Fuadi, D.; Narimo, S.; Hafida, S.; Novitasari, M.; Anif, S.; Prayitno, H.; Sunanih, S.; Adnan, M. Collaborative mathematics learning management: Critical thinking skills in problem-solving. Int. J. Eva. Res. Educ. 2022, 11 (3), 1015–1027. https://doi.org/10.11591/ijere.v11i3.22193
Tabanelli, T.; Cespi, D.; Cucciniello, R. Sustainable and environmental catalysis. Catalysts. 2021, 11 (2), 225. https://doi.org/10.3390/catal11020225
Thornhill-Miller, B.; Camarda, A.; Mercier, M.; Burkhardt, J.; Morisseau, T.; Bourgeois-Bougrine, S.; Vinchon, F.; Hayek, S.; Augereau-Landais, M.; Mourey, F.; Feybesse, C.; Sundquist, D.; Lubart, T. Creativity, Critical Thinking, Communication, and Collaboration: Assessment, Certification, and Promotion of 21st Century Skills for the Future of Work and Education. J. Intel. 2023, 11 (3), 54. https://doi.org/10.3390/jintelligence11030054
Tian, P.; Sun, D.; Han, R.; Yu, F. Integrating micro project-based learning to improve conceptual understanding and crucial learning skills in chemistry. J. Bal. Sci. Educ. 2023, 22 (1), 130–152. https://doi.org/10.33225/jbse/23.22.130
Van Brederode, M. E.; Zoon, S.; Meeter, M. Examining the effect of lab instructions on students’ critical thinking during a chemical inquiry practical. Chem. Educ. Res. Prac. 2020, 21 (4), 1173–1182. https://doi.org/10.1039/d0rp00020e
Van der Zanden, P. J. A. C.; Denessen, E.; Cillessen, A. H. N.; Meijer, P. C. Fostering critical thinking skills in secondary education to prepare students for university: teacher perceptions and practices. Res. Post-Compuls. Educ. 2020, 25 (4), 394–419. https://doi.org/10.1080/13596748.2020.1846313
Wibowo, A. M.; Utaya, S.; Wahjoedi, W.; Zubaidah, S.; Amin, S.; Prasad, R. R. Critical Thinking and Collaboration Skills on Environmental Awareness in Project-Based Science Learning. J. Pend. IPA Ind. 2024, 13 (1), 103–115. https://doi.org/10.15294/jpii.v13i1.48561
Wu, X.; Zhang, Y.; Wu, R.; Tang, X.; Xu, T. Cognitive model construction and assessment of data analysis ability based on CDA. Fron Psy. 2022, 13, 1009142. https://doi.org/10.3389/fpsyg.2022.1009142
Zagallo, P.; Meddleton, S.; Bolger, M. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course. CBE Li. Sci. Educ. 2016, 15 (3), 1–18. https://doi.org/10.1187/cbe.15-11-0239

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Copyright (c) 2025 Eclética Química
