Phytochemical, antioxidant, and enzyme inhibition potential exploration of Nyctanthes arbor-tristis via in vitro and in silico methods
PDF
Review Reports

Keywords

Nyctanthes arbor-tristis
antioxidant
α-amylase inhibition
arborside-C
arborside-D

How to Cite

Parajuli, N. ., Neupane , P. ., Dhital , S. ., Bharati , S. ., Shrestha, T. . ., Maharjan , B. ., Marasini , B. P. ., Subin, J. A., & Shrestha , R. L. S. (2025). Phytochemical, antioxidant, and enzyme inhibition potential exploration of Nyctanthes arbor-tristis via in vitro and in silico methods. Eclética Química, 50, e–1600. https://doi.org/10.26850/1678-4618.eq.v50.2025.e1600

Abstract

Secondary metabolites in medicinal plants have been found to possess a broad spectrum of therapeutic properties. This study investigates the sequential extraction, quantitative phytochemicals, and bioactivity evaluations of Nyctanthes arbor-tristis leaf growing in Nepal. Methanolic extract contains the highest phenolics and resulted in the lowest IC50 values of 56±3 µg/mL and 157±3 µg/mL, in antioxidant and α-amylase inhibition assays, respectively. Hexane extract was found to contain abundant flavonoids and to be the most lethal to brine shrimp napuili with LC50 of 87±5 µg/mL. Phytochemicals arborside-C (ASC) and arborside-D (ASD) were found to be the most potent ligands to bind with α-amylase (PDB ID: 4GQR), resulting from docking and molecular dynamics simulation outcomes. The free energy changes calculated by the MMPBSA method and ADMET profiling of hit candidates supported by the spontaneity of complex formation reactions and their pharmacokinetic efficacy, respectively. This study proposes two compounds as hit candidates for the α-amylase target. Biological characterization using an in vivo approach is further recommended to assess their precise pharmacological validation.

https://doi.org/10.26850/1678-4618.eq.v50.2025.e1600
PDF
Review Reports

References

Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX. 2015, 1 (2), 19–25. https://doi.org/10.1016/j.softx.2015.06.001

Adcock, S. A.; McCammon, J. A. Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins. Chem. Rev. 2006, 106, 1589–1615. https://doi.org/10.1021/cr040426m

Agrawal, J.; Pal, A. Nyctanthes arbor-tristis Linn - A Critical Ethnopharmacological Review. J. Ethnopharmacol. 2013, 146, 645–658. https://doi.org/10.1016/j.jep.2013.01.024

Ahmed, S.; Ali, M. C.; Ruma, R. A.; Mahmud, S.; Paul, G. K.; Saleh, M. A.; Alshahrani, M. M.; Obaidullah, A. J.; Biswas, S. K.; Rahman, M. M.; Rahman, M. M.; Islam, M. R. Molecular Docking and Dynamics Simulation of Natural Compounds from Betel Leaves (Piper Betle L.) for Investigating the Potential Inhibition of Alpha-Amylase and Alpha-Glucosidase of Type 2 Diabetes. Molecules. 2022, 27 (14), 4526. https://doi.org/10.3390/molecules27144526

Aier, I.; Varadwaj, P. K.; Raj, U. Structural Insights into Conformational Stability of Both Wild-Type and Mutant EZH2 Receptor. Sci. Rep. 2016, 6 (1), 34984. https://doi.org/10.1038/srep34984

Akki, K. S.; Krishnamurthy, G.; Bhoja Naik, H. S. Phytochemical Investigations and in vitro Evaluation of Nyctanthes arbor-tristis Leaf Extracts for Antioxidant Property. J. Pharm. Res. 2009, 2 (4), 752–755.

Banerjee, P.; Eckert, A. O.; Schrey, A. K.; Preissner, R. ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals. Nucleic Acids Res. 2018, 46 (1), 257–263. https://doi.org/10.1093/nar/gky318

Banu, K. S.; Cathrine, L. General Techniques Involved in Phytochemical Analysis. Int. J. Adv. Res. Chem. Sci. 2015, 2 (4), 25–32.

Basnet, S.; Ghimire, M. P.; Lamichhane, T. R.; Adhikari, R.; Adhikari, A. Identification of Potential Human Pancreatic Αamylase Inhibitors from Natural Products by Molecular Docking, MM/GBSA Calculations, MD Simulations, and ADMET Analysis. PLoS One. 2023, 18, 1–13. https://doi.org/10.1371/journal.pone.0275765

Bb, C.; Pandeya, S.; Kp, G.; Bharati L Phytochemical Screening and Cytotoxic Activity of Nyctanthes arbor tristis. Indian Res. J. Pharm. Sci. 2015, 2 (2), 205–217.

Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data Bank. Nucleic Acids Res. 2000, 28 (1), 235-242. https://doi.org/10.1093/nar/28.1.235

Bitew, M.; Desalegn, T.; Demissie, T. B.; Belayneh, A.; Endale, M.; Eswaramoorthy, R. Pharmacokinetics and Drug-Likeness of Antidiabetic Flavonoids: Molecular Docking and DFT Study. PLoS One. 2021, 16, 0260853. https://doi.org/10.1371/journal.pone.0260853

Blois, M. S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958, 181 (4617), 1199–1200. https://doi.org/10.1038/1811199a0

Butler, M. S. The Role of Natural Product Chemistry in Drug Discovery. J. Nat. Prod. 2004, 67, 2141–2153. https://doi.org/10.1021/np040106y

Carpenter, T. S.; Kirshner, D. A.; Lau, E. Y.; Wong, S. E.; Nilmeier, J. P.; Lightstone, F. C. A Method to Predict Blood-Brain Barrier Permeability of Drug-Like Compounds Using Molecular Dynamics Simulations. Biophys J. 2014, 107 (3), 630–641. https://doi.org/10.1016/j.bpj.2014.06.024

Cele, N.; Awolade, P.; Seboletswe, P.; Olofinsan, K.; Islam, M. S.; Singh, P. α-Glucosidase and α-Amylase Inhibitory Potentials of Quinoline–1,3,4-Oxadiazole Conjugates Bearing 1,2,3-Triazole with Antioxidant Activity, Kinetic Studies, and Computational Validation. Pharmaceuticals. 2022, 15 (8), 1035. https://doi.org/10.3390/ph15081035

Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M. H.; Elsohly, M. A.; Khan, I. A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evidence-Based Complement Alternat Med. 2014, 2014, 253875. https://doi.org/10.1155/2014/253875

Chauhan, A.; Banerjee, R. Evaluation of Traditional Uses, Phytochemical Constituents, Therapeutic Uses and Future Prospects of pyracantha Genus: A Systematic Review. Nat. Prod. Res. 2024, 39 (5) 922–934. https://doi.org/10.1080/14786419.2024.2319660

Chikalov, I.; Yao, P.; Moshkov, M.; Latombe, J. C. Learning Probabilistic Models of Hydrogen Bond Stability from Molecular Dynamics Simulation Trajectories. BMC Bioinformatics. 2011, 12 (SUPPL. 1), 1–6. https://doi.org/10.1186/1471-2105-12-S1-S34

Choo, M. Z. Y.; Chai, C. L. L. The Polypharmacology of Natural Products in Drug Discovery and Development. Annu. Rep. Med. Chem. 2023, 61, 55–100. https://doi.org/10.1016/bs.armc.2023.10.002

Chothani, S. R.; Dholariya, M. P.; Joshi, R. J.; Chamakiya, C. A.; Maliwal, D.; Pissurlenkar, R. R. S.; Patel, A. S.; Bhalodia, J. J.; Ambasana, M. A.; Patel, R. B.; Bapodra, A. H.; Kapuriya, N. P. Solvent-Free Synthesis, Biological Evaluation and in silico Studies of Novel 2-Amino-7-(Bis(2-Hydroxyethyl)Amino)-4H-Chromene-3-Carbonitrile Derivatives as Potential a-Amylase Inhibitors. J. Mol. Struct. 2024, 1301, 137462. https://doi.org/10.1016/j.molstruc.2023.137462

Das, A. P.; Mathur, P.; Agarwal, S. M. Machine Learning, Molecular Docking, and Dynamics-Based Computational Identification of Potential Inhibitors against Lung Cancer. ACS Omega. 2024, 9 (4), 4528–4539. https://doi.org/10.1021/acsomega.3c07338

Dewi, N. K. S. M.; Fakhrudin, N.; Wahyuono, S. A Comprehensive Review on the Phytoconstituents and Biological Activities of Nyctanthes arbor-tristis L. J. Appl. Pharm. Sci. 2022, 12 (8), 9–17. https://doi.org/10.7324/JAPS.2022.120802

Gautam, V. S.; Singh, A.; Kumari, P.; Nishad, J. H.; Kumar, J.; Yadav, M.; Bharti, R.; Prajapati, P.; Kharwar, R. N. Phenolic and Flavonoid Contents and Antioxidant Activity of an Endophytic Fungus Nigrospora sphaerica (EHL2), Inhabiting the Medicinal Plant Euphorbia Hirta (Dudhi) L. Arch. Microbiol. 2022, 204 (140), 1–13. https://doi.org/10.1007/s00203-021-02650-7

Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G. R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4 (8), 1–13. https://doi.org/10.1186/1758-2946-4-17

Hollingsworth, S. A.; Dror, R. O. Molecular Dynamics Simulation for All. Neuron 99. 2018, 6, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011

Jain, P. K.; Pandey, A. The Wonder of Ayurvedic Medicine-Nyctanthes arbor-tristis. Int. J. Herb. Med. 2016, 9 (4), 9–17.

Khakurel, D.; Uprety, Y.; Ahn, G.; Cha, J. Y.; Kim, W. Y.; Lee, S. H.; Rajbhandary, S. Diversity, Distribution, and Sustainability of Traditional Medicinal Plants in Kaski District, Western Nepal. Front Pharmacol. 2022, 13, 1076351. https://doi.org/10.3389/fphar.2022.1076351

Kumar, S.; Saini, R.; Suthar, P.; Kumar, V.; Sharma, R. Plant Secondary Metabolites: Their Food and Therapeutic Importance. Plant Secondary Metabolites; Springer, Singapore, 2022, 371–2022. https://doi.org/10.1007/978-981-16-4779-6_12

Kunwar, R. M.; Baral, K.; Paudel, P.; Acharya, R. P.; Thapa-Magar, K. B.; Cameron, M.; Bussmann, R. W. Land-Use and Socioeconomic Change, Medicinal Plant Selection and Biodiversity Resilience in Far Western Nepal. PLoS One. 2016, 11 (12), 0167812. https://doi.org/10.1371/journal.pone.0167812

Kushwah, P.; Jain, G.; Patidar, A.; Baghel, J. S.; Agarwal, A. From Ancient Remedies to Modern Marvels: Unveiling the Medicinal Secrets of Nyctanthes arbor-tristis and Piper Betle Linn. Leaves- A Comprehensive Review. Int. J. Pharm. Sci. Med. 2023, 8 (12), 11–24. https://doi.org/10.47760/ijpsm.2023.v08i12.002

Laware, S. G.; Shirole, N. L. Formulation and Development of Polyherbal Ointment Containing Clerodendrum Serratum, Solanum Xanthocarpum, and Nyctanthes Arbort ristis Extracts and Assessment of Anti-Inflammatory Activity in Carrageenan-Induced Paw Edema Model. Int. J. Pharm. Qual. Assur. 2023, 14 (3), 523–528. https://doi.org/10.25258/ijpqa.14.3.10

Liu, M.; Hu, B.; Zhang, H.; Zhang, Y.; Wang, L.; Qian, H.; Qi, X. Inhibition Study of Red Rice Polyphenols on Pancreatic α-Amylase Activity by Kinetic Analysis and Molecular Docking. J. Cereal Sci. 2017A, 76, 186–192. https://doi.org/10.1016/j.jcs.2017.04.011

Liu, P.; Lu, J.; Yu, H.; Ren, N.; Lockwood, F. E.; Wang, Q. J. Lubricant Shear Thinning Behavior Correlated with Variation of Radius of Gyration via Molecular Dynamics Simulations. J. Chem. Phys. 2017B, 147 (8), 084904. https://doi.org/10.1063/1.4986552

Lolok, N.; Sumiwi, S. A.; Muhtadi, A.; Susilawati, Y.; Hendriani, R.; Ramadhan, D. S. F.; Levita, J.; Sahidin, I. Molecular Docking and Molecular Dynamics Studies of Bioactive Compounds Contained in Noni Fruit (Morinda citrifolia L.) against Human Pancreatic α-Amylase. J. Biomol. Struct. Dyn. 2022, 40 (15), 7091–7098. https://doi.org/10.1080/07391102.2021.1894981

Majumder, R.; Adhikari, L.; Hossain, C. M.; Dhara, M.; Sahu, J. Toxicological Evaluation, Brine Shrimp Lethality Assay, in vivo and ex vivo Antioxidant Assessment Followed by GC-MS Study of the Extracts Obtained from Olax Psittacorum (Lam.) Vahl. Orient. Pharm. Exp. Med. 2019, 1–23. https://doi.org/10.1007/s13596-019-00384-y

Martínez, L. Automatic Identification of Mobile and Rigid Substructures in Molecular Dynamics Simulations and Fractional Structural Fluctuation Analysis. PLoS One. 2015, 10 (3), 0119264. https://doi.org/10.1371/journal.pone.0119264

Meshram, M. M.; Rangari, S. B.; Kshirsagar, S. B.; Gajbhiye, S.; Trivedi, M. R.; Sahane, R. S. Nyctanthes arbor-tristis a Herbal Panacea. IJPSR. 2012, 3 (8), 2432–2440.

Meyer, B. N.; Ferrigni, N. A.; Putnam, J. E.; Jacobsen, L. B.; Nichols, D. E.; Mclaughlin, J. L. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. J. Med. Plants. Res. 1982, 45, 31–34. https://doi.org/10.1055/s-2007-971236

Mishra, A. K.; Tiwari, K. N.; Saini, R.; Chaurasia, J. K.; Mishra, S. K. Assessment of Antioxidant Potential in Seed Extracts of Nyctanthes arbor-tristis L. and Phytochemical Profiling by Gas Chromatography-Mass Spectrometry System. Braz. J. Pharm. Sci., 2022, 58, e21180. https://doi.org/10.1590/s2175-97902022e21180

Mishra, A. K.; Upadhyay, R.; Chaurasia, J. K.; Tiwari, K. N. Comparative Antioxidant Study in Different Flower Extracts of Nyctanthes arbor-tristis (L.) (Oleaceae): an Important Medicinal Plant. Braz. J. Bot., 2016, 39, 813–820. https://doi.org/10.1007/s40415-016-0283-x

Mohamed, G. A.; Omar, A. M.; El-Araby, M. E.; Mass, S.; Ibrahim, S. R. M. Assessments of Alpha-Amylase Inhibitory Potential of Tagetes Flavonoids through in vitro, Molecular Docking, and Molecular Dynamics Simulation Studies. Int. J. Mol. Sci. 2023, 24 (12), 10195. https://doi.org/10.3390/ijms241210195

Mustafa, I.; Faisal, M. N.; Hussain, G.; Muzaffar, H.; Imran, M.; Ijaz, M. U.; Sohail, M. U.; Iftikhar, A.; Shaukat, A.; Anwar, H. Efficacy of Euphorbia Helioscopia in Context to a Possible Connection between Antioxidant and Antidiabetic Activities: A Comparative Study of Different Extracts. BMC Complement Med Ther. 2021, 21 (1), 1–12. https://doi.org/10.1186/s12906-021-03237-x

Naseem, N.; Khaliq, T.; Jan, S.; Nabi, S.; Sultan, P.; Hassan, Q. P.; Mir, F. A. An Overview on Pharmacological Significance, Phytochemical Potential, Traditional Importance and Conservation Strategies of Dioscorea deltoidea: A High Valued Endangered Medicinal Plant. Heliyon. 2024, 10 (10), e31245. https://doi.org/10.1016/j.heliyon.2024.e31245

Niksic, H.; Becic, F.; Koric, E.; Gusic, I.; Omeragic, E.; Muratovic, S.; Miladinovic, B.; Duric, K. Cytotoxicity Screening of Thymus Vulgaris L. Essential Oil in Brine Shrimp Nauplii and Cancer Cell Lines. Sci Rep. 2021, 11 (13178), 1–9. https://doi.org/10.1038/s41598-021-92679-x

Ogunyemi, O. M.; Gyebi, G. A.; Saheed, A.; Paul, J.; Nwaneri-Chidozie, V.; Olorundare, O.; Adebayo, J.; Koketsu, M.; Aljarba, N.; Alkahtani, S.; Batiha, G. E. S.; Olaiya, C. O. Inhibition Mechanism of Alpha-Amylase, a Diabetes Target, by a Steroidal Pregnane and Pregnane Glycosides Derived from Gongronema latifolium Benth. Front. Mol. Biosci. 2022, 9, 866719. https://doi.org/10.3389/fmolb.2022.866719

Olsson, T. S. G.; Williams, M. A.; Pitt, W. R.; Ladbury, J. E. The Thermodynamics of Protein-Ligand Interaction and Solvation: Insights for Ligand Design. J. Mol. Biol. 2008, 384 (4), 1002–1017. https://doi.org/10.1016/j.jmb.2008.09.073

Omar, A. M.; AlKharboush, D. F.; Mohammad, K. A.; Mohamed, G. A.; Abdallah, H. M.; Ibrahim, S. R. M. Mangosteen Metabolites as Promising Alpha-Amylase Inhibitor Candidates: In silico and in vitro Evaluations. Metabolites. 2022, 12 (12), 1239. https://doi.org/10.3390/metabo12121229

Onufriev, A. V; Case, D. A. Generalized Born Implicit Solvent Models for Biomolecules. Annu. Rev. Biophys. 2019, 48 (1), 275–298. https://doi.org/10.1146/annurev-biophys-052118-115325

Phuyal, N.; Jha, P. K.; Raturi, P. P.; Rajbhandary, S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Sci. World J. 2020, 2020, 8780704. https://doi.org/10.1155/2020/8780704

Pires, D. E. V.; Blundell, T. L.; Ascher, D. B. PkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58 (9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S. M.; Oliveira, E. F. T.; Viegas, M. F.; Araújo, A. N.; Ramos, M. J.; Silva, A. M. S.; Fernandes, P. A.; Fernandes, E. Evaluation of a Flavonoids Library for Inhibition of Pancreatic α-Amylase towards a Structure–Activity Relationship. J. Enzyme Inhib. Med. Chem. 2019, 34 (1), 577–588. https://doi.org/10.1080/14756366.2018.1558221

Rathore, A.; Juneja, R. K.; Tandon, J. S. An Iridoid Glucoside Form Nyctanthes arbor-tristis. Phytochemistry. 1989, 28 (7), 1913–1917. https://doi.org/10.1016/S0031-9422(00)97886-5

Rawat, H.; Verma, Y.; Saini, N.; Negi, N.; Pant, H. C.; Mishra, A. Nyctanthes arbor-tristis: A Traditional Herbal Plant with Miraculous Potential in Medicine. Int. J. Bot. Stud. 2021, 6 (3), 427–440.

Renganathan, S.; Manokaran, S.; Vasanthakumar, P.; Singaravelu, U.; Kim, P. S.; Kutzner, A.; Heese, K. Phytochemical Profiling in Conjunction with in vitro and in silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) de Wit for the Treatment of Diabetes Mellitus. ACS Omega. 2021, 6 (29), 19045–19057. https://doi.org/10.1021/acsomega.1c02350

Sabudak, T.; Demirkiran, O.; Ozturk, M.; Topcu, G. Phenolic Compounds from Trifolium echinatum Bieb. and Investigation of Their Tyrosinase Inhibitory and Antioxidant Activities. Phytochemistry. 2013, 96, 305–311. https://doi.org/10.1016/j.phytochem.2013.08.014

Sah, A. K.; Verma, V. K. Phytochemicals and Pharmacological Potential of Nyctanthes arbor-tristis: A Comprehensive Review. Int. J. Res. Pharm. Biomed. Sci. 2012, 3 (1), 420–427.

Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R. R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC Assays for Antioxidant Activity Determination in Apple Fruit Extracts. Eur. Food Res. Technol. 2020, 246 (3), 591–598. https://doi.org/10.1007/s00217-020-03432-z

Shaweta, S.; Akhil, S.; Utsav, G. Molecular Docking Studies on the Anti-Fungal Activity of Allium Sativum (Garlic) against Mucormycosis (Black Fungus) by BIOVIA Discovery Studio Visualizer 21.1.0.0. Ann. Antivir Antiretrovir. 2021, 5 (1), 28–32. https://doi.org/https://doi.org/10.21203/rs.3.rs-888192/v1

Shrestha, T.; Maharjan, B.; Panta, R.; Lal Swagat Shrestha, R.; Parajuli, N.; Neupane, P.; Dhital, S.; Bharati, S.; Adhikari Subin, J.; Marasini, P. Molecular Docking and ADMET Prediction of Compounds from Piper Longum L. Detected by GC-MS Analysis in Diabetes Management. Mor. J. Chem. 2024, 2024 (2), 776–798. https://doi.org/10.48317/IMIST.PRSM/morjchem-v12i2.46845

Solanki, M.; Rajhans, S.; Pandya, H. A.; Mankad, A. U. Nyctanthes arbor-tristis Linn: A Short Review. World J. Pharm. Pharm. Sci. 2021, 10 (3), 1047–1054. https://doi.org/10.20959/wjpps20213-18575

Stănciuc, N.; Râpeanu, G.; Bahrim, G. E.; Aprodu, I. The Interaction of Bovine β-Lactoglobulin with Caffeic Acid: From Binding Mechanisms to Functional Complexes. Biomolecules. 2020, 10 (8), 1–14. https://doi.org/10.3390/biom10081096

Sugandh, F.; Chandio, M.; Raveena, F.; Kumar, L.; Karishma, F.; Khuwaja, S.; Memon, U. A.; Bai, K.; Kashif, M.; Varrassi, G.; Khatri, M.; Kumar, S. Advances in the Management of Diabetes Mellitus: A Focus on Personalized Medicine. Cureus. 2023, 15 (8), e43697. https://doi.org/10.7759/cureus.43697

Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2009, 31, 455-461. https://doi.org/10.1002/jcc.21334

Vasanthkumar, J.; Hulikal, A.; Santoshkumar, S.; Sripathy, H. In silico Docking Studies of α Amylase Inhibitors from the Anti Diabetic Plant Leucas ciliata Benth and an Endophyte, Streptomyces longisporoflavus. 3 Biotech. 2021, 11 (2), 1–16. https://doi.org/10.1007/s13205-020-02547-0

Vishwakarma, R. K.; Negi, A.; Negi, D. S. Abortitristoside A and Desrhamnosylverbanscoside: The Potential COX-2 Inhibitor from the Leaves of Nyctanthes arbor-tristis as Anti-Inammatory Agents Based on the in vitro Assay, Molecular Docking and ADMET Prediction. Chem. Pap. 2022, 77 (6), 3035-3049. https://doi.org/10.21203/rs.3.rs-1345800/v2

Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J. Z. H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

Yang, Y.; Karakhanova, S.; Hartwig, W.; D’Haese, J. G.; Philippov, P. P.; Werner, J.; Bazhin, A. V. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J. Cell Physiol. 2016, 231 (12), 2570–2581. https://doi.org/10.1002/jcp.25349

Yi, J.; Zhao, T.; Zhang, Y.; Tan, Y.; Han, X.; Tang, Y.; Chen, G. Isolated Compounds from Dracaena Angustifolia Roxb and Acarbose Synergistically/Additively Inhibit α-Glucosidase and α-Amylase: An in vitro Study. BMC Complement Med Ther. 2022, 22 (177), 1–12. https://doi.org/10.1186/s12906-022-03649-3

Yuan, S.; Chan, H. C. S.; Hu, Z. Using PyMOL as a Platform for Computational Drug Design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, 1298. https://doi.org/10.1002/wcms.1298

Zahra, S.; Zaib, S.; Khan, I. Identification of Isobenzofuranone Derivatives as Promising Antidiabetic Agents: Synthesis, in vitro and in vivo Inhibition of α-Glucosidase and α-Amylase, Computational Docking Analysis and Molecular Dynamics Simulations. Int. J. Biol. Macromol. 2024, 259 (2), 129241. https://doi.org/10.1016/j.ijbiomac.2024.129241

Zain, S. N. D. M.; Omar, W. A. W. Antioxidant Activity, Total Phenolic Content and Total Flavonoid Content of Water and Methanol Extracts of Phyllanthus Species from Malaysia. Pharmacogn J. 2018, 10 (4), 677–681. https://doi.org/10.5530/pj.2018.4.111

Zerdan, M. B.; Moussa, S.; Atoui, A.; Assi, H. I. Mechanisms of Immunotoxicity: Stressors and Evaluators. Int. J. Mol. Sci. 2021, 22 (15), 8242. https://doi.org/10.3390/ijms22158242

Zhang, D.; Lazim, R. Application of Conventional Molecular Dynamics Simulation in Evaluating the Stability of Apomyoglobin in Urea Solution. Sci. Rep. 2017, 7, 44651. https://doi.org/10.1038/srep44651

Zhao, Y.; Wang, M.; Huang, G. Structure-Activity Relationship and Interaction Mechanism of Nine Structurally Similar Flavonoids and α-Amylase. J. Funct. Foods. 2021, 86, 104739. https://doi.org/10.1016/j.jff.2021.104739

Zoete, V.; Cuendet, M. A.; Grosdidier, A.; Michielin, O. SwissParam: A Fast Force Field Generation Tool for Small Organic Molecules. J. Comput. Chem. 2011, 32 (11), 2359–2368. https://doi.org/10.1002/jcc.21816

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Eclética Química

Metrics

Metrics Loading ...