Diketopiperazines and arylethylamides produced by Schizophyllum commune, an endophytic fungus in Alchornea glandulosa

Main Article Content

Angela Regina Araujo
Carolina Rabal Biasetto
Andressa Somensi
Fernanda Sales Figueiro
Luiz Alberto Beraldo de Moraes
Geraldo Humberto Silva
Maria Claudia Marx Young
Vanderlan da da Silva Bolzani

Abstract

Chemical investigation of the crude PDB extract obtained from the endophytic fungus Schizophyllum commune afforded the pure substances, cyclo(L-Pro-L-Val) (1), uracil (2), cyclo(Pro-Tyr) (3), p-hydroxybenzoic acid (4) and a mixture of Rel.cyclo(Pro-Phe) (5) and Rel.cyclo(Pro-Ile) (6). When cultured in corn, the extract of this fungus yielded N-(2-phenylethyl) acetamide (7) and N-(4-hydroxyphenylethyl) acetamide (8). The structures of all compounds were determined based on the analyses of their MS, 1D and 2D-NMR spectroscopic data. Analysis of the crude extracts obtained from small-scale cultures (in PBD, YM, Nutrient, Czapek, Malt Extract, Corn and Rice) and a large-scale culture (in PDB) by mass spectrometry showed the presence of diketopiperazines 1, 3, 5 and 6. The crude extracts showed promising antioxidant, antifungal and acetylcholinesterase (AChE) inhibitory activities. The metabolites 7 and 8 showed antifungal and AChE inhibitory activities in vitro. This is the first report of the identification and isolation of diketopiperazines, arylethylamides, p-hydroxybenzoic acid in endophytic fungus of the Schizophyllum genus.

Metrics

Metrics Loading ...

Article Details

How to Cite
Araujo, A. R., Biasetto, C. R., Somensi, A., Figueiro, F. S., de Moraes, L. A. B., Silva, G. H., Young, M. C. M., & Bolzani, V. da da S. (2019). Diketopiperazines and arylethylamides produced by Schizophyllum commune, an endophytic fungus in Alchornea glandulosa. Eclética Química, 44(3), 36–42. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p36-42
Section
Original articles

References

Gunatilaka, A. A. L., Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence, J. Nat. Prod. 69 (3) (2006) 509-526. https://doi.org/10.1021/np058128n.

Rodriguez, R. J., White Jr. J. F., Arnold, A. E., Redman, R. S., Fungal endophytes: diversity and functional roles, New Phytologist 182 (2) (2009) 314-330. https://doi.org/10.1111/j.1469-8137.2009.02773.x.

Tan, R. X., Zou, W. X., Endophytes: a rich source of functional metabolites, Nat. Prod. Rep. 18 (8) (2001) 448-459. https://doi.org/10.1039/B100918O.

Kusari, S., Pandey, S. P., Spiteller, M., Untapped mutualistic paradigms linking host plant and endophytic fungal production of similar bioactive secondary metabolites, Phytochemistry 91 (2013) 81-87. https://doi.org/10.1016/j.phytochem.2012.07.021.

Bae, H., Sicher, R. C.; Kim, M. S., Kim, S-H.; Strem, M. D., Melnick, R. L., Bailey, B. A., The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao, J. Exp. Bot. 60 (11) (2009) 3279-3295. https://doi.org/10.1093/jxb/erp165.

Kusari, P., Kusari, S., Spiteller, M., Kayser, O., Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology, Appl. Microbiol. Biotechnol. 99 (13) (2015) 5383-5390. https://doi.org/10.1007/s00253-015-6660-8.

Gutierrez, R. M. P., Gonzalez, A. M. N., Ramirez, A. M., Compounds derived from endophytes: a review of phytochemistry and pharmacology, Curr. Med. Chem. 19 (18) (2012) 2992-3030. https://doi.org/10.2174/092986712800672111.

Kusari, S., Spiteller, M., Are we ready for industrial production of bioactive plant secondary metabolites utilizing endophytes? Nat. Prod. Rep. 28 (7) (2011) 1203-1207. https://doi.org/10.1039/c1np00030f.

Wang, L. W., Xu, B. G., Wang, J. Y., Su, Z. Z., Lin, F. C., Zhang, C. L., Kubicek, C. P., Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens, Appl. Microbiol. Biot 93 (3) (2012) 1231-1239. https://doi.org/10.1007/s00253-011-3472-3.

Bolzani, V. S., Trevisan, L. M. V., Young, M. C. M., Caffeic acid esters and triterpenes of Alibertia macrophyla. Phytochemistry 30 (6) (1991) 2089-2091. https://doi.org/10.1016/0031-9422(91)85077-D.

Young, M. C. M., Braga, M. R., Dietrich, S. M. C., Gottlieb, H. E., Trevisan, L. M. V., Bolzani, V. S., Fungitoxic non-glycosidic iridoids from Alibertia macrophylla, Phytochemistry 31 (10) (1992) 3433-3435. https://doi.org/10.1016/0031-9422(92)83701-Y.

Silva, V. C., Faria, A. O., Bolzani, V. S., Lopes, M. N., A new ent-kaurane diterpene from stems of Alibertia macrophylla K. SCHUM. (Rubiaceae), Helv. Chim. Acta 90 (10) (2007) 1781-1785. https://doi.org/10.1002/hlca.200790187.

Junior, C. V., Pivatto, M., Rezende, A., Hamerski, L., Silva, D. H. S., Bolzani, V. S., (–)-7-Hydroxycassine: a new 2,6-dialkylpiperidin-3-ol alkaloid and other constituents isolated from flowers and fruits of Senna spectabilis (Fabaceae), J. Braz. Chem. Soc. 24 (2) (2013) 230-235. https://doi.org/10.5935/0103-5053.20130029.

Calvo, T. R., Lima, Z. P., Silva, J. S., Ballesteros, K. V. R., Pellizzon, C. H., Hiruma-Lima, C. A., Tamashiro, J., Brito, A. R. M. S., Takahira, R. K., Vilegas, W., Constituents and antiulcer effect of Alchornea glandulosa: activation of cell proliferation in gastric mucosa during the healing process, Biol. Pharm. Bull. 30 (3) (2007) 451-459. https://doi.org/10.1248/bpb.30.451.

Conegero, L. S., Ide, R. M., Nazari, A. S., Sarragiotto, M. H., Filho, B. P. D., Nakamura, C. V., Carvalho, J. E., Foglio, M. A., Constituintes químicos de Alchornea glandulosa (Euphorbiaceae), Quím. Nova 26 (6) (2003) 825-827. https://doi.org/10.1590/S0100-40422003000600008.

Lopes, F. C. M., Rocha, A., Pirraco, A., Regasini, L. O., Silva, D. H. S., Bolzani, V. S., Azevedo, I., Carlos, I. Z., Soares, R., Anti-angiogenic effects of pterogynidine alkaloid isolated from Alchornea glandulosa, BMC Complem. Altern. M. 9 (15) (2009). https://doi.org/10.1186/1472-6882-9-15.

Kumari, M., Survase, S. A., Singhal, R. S., Production of schizophyllan using Schizophyllum commune NRCM, Bioresource Technol. 99 (5) (2008) 1036-1043. https://doi.org/10.1016/j.biortech.2007.02.029.

Tripathi, A. M., Tiwary, B. N., Biochemical constituents of a wild strain of Schizophyllum commune isolated from Achanakmar-Amarkantak Biosphere Reserve (ABR), India, World Journal of Microbiology and Biotechnology 29 (8) (2013) 1431-1442. https://doi.org/10.1007/s11274-013-1306-4.

Martins, M. B., Carvalho, I., Diketopiperazines: biological activity and synthesis, Tetrahedron 63 (40) (2007) 9923-9932. https://doi.org/10.1016/j.tet.2007.04.105.

Gendy, B. D. M., Rateb, M. E., Antibacterial activity of diketopiperazines isolated from a marine fungus using t-butoxycarbonyl group as a simple tool for purification, Bioorg. Med. Chem. Lett. 25 (15) (2015) 3125-3128. https://doi.org/10.1016/j.bmcl.2015.06.010.

Sathya, A., Vijayabharathi, R., Kumari, B. R., Srinivas, V., Sharma, H. C., Sathayadevi, P., Gopalakrishnan, S., Assessment of a diketopiperazine, cyclo(Trp-Phe) from Streptomyces griseoplanus SAI 25 against cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), Appl. Entomol. Zool. 51 (1) (2016) 11-20. https://doi.org/10.1007/s13355-015-0366-3.https://doi.org/10.1007/s13355-015-0366-3

Ivanova, V., Laatsch, H., Kolarova, M., Aleksieva, K., Structure elucidation of a new natural diketopiperazine from a Microbispora aerata strain isolated from Livingston Island, Antarctica, Nat. Prod. Res. 27 (2) (2013) 164-170. https://doi.org/10.1080/14786419.2012.665911.

Maskey, R. P., Asolkar, R. N.; Kapaun, E., Wagner-Döbler, I., Laatsch, H., Phytotoxic arylethylamides from limnic bacteria using a screening with microalgae, J. Antibiotics 55 (7) (2002) 643-649. https://doi.org/10.7164/antibiotics.55.643.

Teles, H. L., Silva, G. H., Castro-Gamboa, I., Bolzani, V. S., Pereira, J. O., Costa-Neto, C. M., Eberlin, M. N., Young, M. C. M., Araújo, A. R., Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae), Phytochemistry 66 (19) (2005) 2363-2367. https://doi.org/10.1016/j.phytochem.2005.04.043.

Marston, A., Kissling, J., Hostettmann, K., A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants, Phytochem. Analysis 13 (1) (2002) 51-54. https://doi.org/10.1002/pca.623.

Pauletti, P. M., Castro-Gamboa, I., Silva, D. H. S., Young, M. C. M., Tomazela, D. M., Eberlin, M. N., Bolzani, V. S., New antioxidant C-glucosylxanthones from the stems of Arrabidaea samydoides, J. Nat. Prod. 66 (10) (2003) 1384-1387. https://doi.org/10.1021/np030100t.

Rahalison, L., Hamburger, M., Hostettmann, K., Monod, M., Frenk, E., A bioautographic agar overlay method for the detection of antifungal compounds from higher plants, Phytochem. Analysis 2 (5) (1991) 199-203. https://doi.org/10.1002/pca.2800020503.

Fdhila, F., Vázquez, V., Sánchez, J. L., Riguera, R., DD-Diketopiperazines: antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pectenmaximus, J. Nat. Prod., 66 (10) (2003) 1299-1301. https://doi.org/10.1021/np030233e.

Jayatilake, G. S., Thornton, M. P., Leonard, A. C., Grimwade, J. E., Baker, B. J., Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa, J. Nat. Prod. 59 (3) (1996) 293-296. https://doi.org/10.1021/np960095b.

Lin, Z. J., Lu, X. M., Zhu, T. J., Fang, Y. C., Gu, Q. Q., Zhu, W., GPR12 Selections of the metabolites from an endophytic Streptomyces sp. associated with Cistanches deserticola, Arch Pharm. Res. 31 (1108) (2008) 1108-1114. https://doi.org/10.1007/s12272-001-1276-4.

Marinho, A. M. R., Marinho, P. S. B., Rodrigues, E. F., Chemical components of Penicillium sp, an endophytic fungus from Murraya paniculata (Rutaceae), Revista Ciências Exatas e Naturais 9 (2) (2007) 189-199. https://revistas.unicentro.br/index.php/RECEN/article/view/80.

Takaya, Y., Furukawa, T., Miura, S., Akutagawa, T., Hotta, Y., Ishikawa, N., Niwa, M., Antioxidant constituents in distillation residue of awamori spirits, J. Agric. Food Chem. 55 (1) (2007) 75-79. https://doi.org/10.1021/jf062029d.

Wang, G., Dai, S., Chen, M., Wu, H., Xie, L., Luo, X., Li, X., Two diketopiperazine cyclo(pro-phe) isomers from marine bacteria Bacillus subtilis sp. 13-2, Chem. Nat. Compd. 46 (4) (2010) 583-585. https://doi.org/10.1007/s10600-010-9680-8.