Abstract
Multivariate analysis techniques are powerful tools in the study of groundwater quality, providing an expanded view of quality parameters. This work presents a multivariate analysis of groundwater quality in the city of Sousa, Paraíba state, through the techniques of principal component analysis (PCA) and hierarchical cluster analysis (HCA). Samples from 13 tubular wells were collected in different districts of the city of Sousa, during the rainy and dry seasons. For these samples, 11 parameters were analyzed: hydrogenic potential (pH), total dissolved solids, total alkalinity, carbonates, bicarbonates, total hardness, magnesium, calcium, sodium, potassium, and chlorides. PC1, PC2, PC3 and PC4 explain 87.48% of the total variance of the data. The PCA shows that there was a change in patterns between the analyzed periods. The correlation matrix corroborates the PCA data, showing the relationships between the physical-chemical variables evaluated. The HCA confirmed the correlations between the samples, making it possible to assess the degree of similarity between the composition of the wells and between the parameters evaluated.
References
Baird, R. B.; Eaton, A. D. & Rice, E. W. (Eds.) Standard Methods for the Examination of Water and Wastewater. 23th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington. 2017.
Carvalho, F. I. M.; Lemos, V. P.; Dantas Filho, H. A.; Dantas, K. G. F. Avaliação da Qualidade das Águas Subterrâneas de Belém a partir de Parâmetros Físico-Químicos e Níveis de Elementos Traço Usando Análise Multivariada. Rev. Virtual Quím. 2015, 7 (6), 2221–2241. https://doi.org/10.5935/1984-6835.20150132
Celestino, A. E. M.; Cruz, D. A. M.; Sánchez, E. M. O.; Reyes, F. G.; Soto, D. V. Groundwater Quality Assessment: An Improved Approach to K-Means Clustering, Principal Component Analysis and Spatial Analysis: A Case Study. Water. 2018, 10 (4), 437. https://doi.org/10.3390/w10040437
Chaves, H. S.; Morais, D. G.; Dantas Filho, H. A.; Dantas, K. G. F.; Beirao, A. T. M.; Silva, K.P.; Silva, J. N.; Silva, V. F. A.; Silva, P. A.; Carvalho, F. I. M. Aplicação estatística multivariada para a avaliação físico-química na qualidade da água subterrânea na cidade de Parauapebas (Sudeste do Estado do Pará). Revista Ibero Americana de Ciências Ambientais. 2020, 11 (5), 261–272. https://doi.org/10.6008/CBPC2179-6858.2020.005.0025
Charfi, S.; Zouari, K.; Feki, S.; Mami, E. Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quat. Int. 2013, 302, 199–209. https://doi.org/10.1016/j.quaint.2012.11.002
Ferreira, M. M. C. Quimiometria: Conceitos, métodos e aplicações. Editora da Unicamp, 2015. https://doi.org/10.7476/9788526814714
Galvão, M. J. T. G.; Costa Filho, W. D.; Srinivasan, V. S.; Schuster, H. D. M.; Rego, J. C.; Albuquerque, J. P. T. Comportamento das bacias sedimentares da região semiárida do Nordeste brasileiro. Hidrogeologia da Bacia Sedimentar do Rio do Peixe. CPRM/UFCG/FINEP, 2005.
Gomes, M. C. R.; Cavalcante, I. N. Aplicação da análise estatística multivariada no estudo da qualidade da água subterrânea. Águas Subterrâneas. 2017, 31 (1), 134–149. https://doi.org/10.14295/ras.v31i1.28617
Harris, D. C. Análise Química Quantitativa. LTC, 2017.
Jiang, Y.; Guo, H.; Jia, Y.; Cao, Y.; Hu, C. Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia. Geochemistry. 2015, 75 (2), 197–205. https://doi.org/10.1016/j.chemer.2014.12.002
Lyra, W. S.; Silva, E. C.; Araújo, M. C. U; Fragoso, W. D.; Veras, G. Classificação periódica: um exemplo didático para ensinar análise de componentes principais. Quím. Nova. 2010, 33 (7), 1594–1597. https://doi.org/10.1590/S0100-40422010000700030
Lopes, T. S. A.; Santos, W. B.; Silva, G. A. B.; Silveira, T. N.; Ferreira, W. B.; Feitosa, P. H. C.; Lima, V. L. A. Effects of the transfer of the São Francisco River waters on the performance of the water treatment plant of Gravatá, Paraíba, Brazil. Water Supply. 2022, 22 (3), 3297–3306. https://doi.org/10.2166/ws.2021.404
Mingoti, S. A. Análise de dados através de métodos de estatística multivariada. Editora da UFMG, 2007.
Nnorom, I. C.; Ewezie, U.; Eze S. O. Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Heliyon. 2019, 5 (1), e01123. https://doi.org/10.1016/j.heliyon.2019.e01123
Pan, C.; Ng, K. T. W.; Richter, A. An integrated multivariate statistical approach for the evaluation of spatial variations in groundwater quality near an unlined landfill. Environ Sci Pollut Res 2019, 26 (6), 5724–5737. https://doi.org/10.1007/s11356-018-3967-x
Rossiter, K. W. L.; Marques, E. A. T.; Oliveira, C. R.; Morais, M. M. Q. M. M. Spatial-temporal evaluation of water quality in Brazilian semiarid reservoirs. Water Pract. Technol. 2020, 15 (1), 92–104. https://doi.org/10.2166/wpt.2020.001
Souza, A. M.; Poppi, R. J. Didactic chemometrics experiment for exploratory analysis of edible vegetable oils by mid-infrared spectroscopy and principal component analysis: a tutorial, part I. Quím. Nova. 2012, 35 (1), 223–229. https://doi.org/10.1590/S0100-40422012000100039
Taşan, M.; Demir, Y.; Taşan, S. Groundwater quality assessment using principal component analysis and hierarchical cluster analysis in Alaçam, Turkey. Water Supply. 2022, 22 (3), 3431–3447. https://doi.org/10.2166/ws.2021.390
Valderrama, L.; Paiva, V. B.; Março, P. H.; Valderrama, P. Proposta experimental didática para o ensino de análise de componentes principais. Quím. Nova. 2016, 39 (2), 245–249. https://doi.org/10.5935/0100-4042.20150166

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Eclética Química