Ascorbic acid determination using a carbon paste electrode modified with iron(III) ions adsorbed on humic acid

Main Article Content

Lucinei Stechmann da Silva
Tiago Nieswald Oliveira
Marco Aurélio Ballin
Carlos Roberto de Menezes Peixoto

Abstract

An amperometric sensor was constructed, by using humic acids to immobilize Fe 3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H 2 A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe 3+ /Fe 2+ couple at E 1/2 =+0.78 V vs SCE, using 0.5 mol L -1 KCl and 0.2 mol L -1 acetate/0.020 mol L -1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H 2 A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(μA) = 7.6286 [H 2 A] (mmol L -1 ) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L -1 . The electrode showed high stability and was used for H 2 A determination in a natural orange juice.

Metrics

Metrics Loading ...

Article Details

How to Cite
da Silva, L. S., Oliveira, T. N., Ballin, M. A., & Peixoto, C. R. de M. (2006). Ascorbic acid determination using a carbon paste electrode modified with iron(III) ions adsorbed on humic acid. Eclética Química, 31(4), 39–42. https://doi.org/10.26850/1678-4618eqj.v31.4.2006.p39-42
Section
Original articles

References

J. O. Pontólio, N. Ferranti, M. L. A. M. Campos, and J. R. [2]

Romero, J. Electroanal. Chem. 584 (2005) 124.

W. S. Cardoso, and Y. Gushikem, J. Electroanal. Chem. 583

(2005) 300.

M. M. Ardakani, Z. Akrami, H. Kazemian, and H. R. Zare, J.

Electroanal. Chem. 586(2006)31.

M. H. Pournaghi-Azar, and H. Nahalparvari, J. Electroanal.

Chem.583 (2005) 307.

X. Lin, C. Jiang, Anal. Sci. 22 (2006) 697.

F. J. Stevenson, Húmus Chemistry: Genesis, composition,

reactions, John Wiley & Sons, INC., New York, 2a ed., 1994.

J. C. Rocha, A. H. Rosa, Substâncias Húmicas Aquáticas, Inte-

ração com Espécies Metálicas, Ed. Unesp, São Paulo-SP, 2003.

R. S. Swift, in: Methods of Soil Analysis Part 3: Chemical

Methods (SSSA Book Series No.5.), Sparks, D.L. ed., SSSA and

ASA, Madison, WI, 1996.

M. O. O. Rezende, and F. N. Crespilho, Quim. Nova 27

(2004) 964.

W. T. L. Silva, C. Thobie-Gautier, M. O. O. Resende, and N.

El Murr, Electroanalysis 14 (2002) 71.

C. Wang, B. Zhu, and H. Li, Electroanalysis 11 (1999) 183.

C. Wang, H. Zhang, Y. Sun, and H. Li, Anal. Chim. Acta 361

(1998) 133.

Q. Y. Sun, C. M. Wang, L. X. Li, and H. L. Li, Fresenius J.

Anal. Chem. 363 (1999) 114.

Z. Navratilova, and P. Kula, Anal. Chim. Acta 273 (1993) 305.

C.D. García, and P.I. Ortiz, Talanta 61 (2003) 547.

M. J. Tedesco, C. Geanello, C. A. Bissani, H. E. Bohnen, and

S. A. J. Volkweiss, Análises de Solo, Plantas e Outros Materiais,

Departamento de Solos, Faculdade de Agronomia, Universidade

Federal do Rio Grande do Sul, Porto Alegre, RS, 1995.

IMESP, Normas Técnicas do Instituto Adolfo Lutz, São

Paulo, SP, Brasil, 1985.

G. Sposito, The Chemistry of Soils, Oxford University

Press, New York, 1989.

F. A. Cotton, G. Wilkinson, C. A. Murillo, and M.

Bochmann, Advanced Inorganic Chemistry, sixth ed., John

Willey & Sons, Inc., New York, 1999.