Synthesis, characterization, and thermal behavior of amidosulfonates of transition metals in air and nitrogen atmosphere

Main Article Content

Jose Marques Luiz
Ronaldo Spezia Nunes

Abstract

The amidosulfonates of Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were prepared by the direct reaction between the metal carbonate and the amidosulfonic acid with heating and stirring. The compounds were characterized by infrared absorption spectroscopy (IRFT), elemental analysis, thermal analysis (TG and DTA) and X-ray diffraction by the powder method. The absorptions observed in IR spectra are associated with N-H and O-H stretching, as well as symmetrical and asymmetric S-O stretching in the sulfonic group. The compounds present X-ray diffraction pattern with well-defined reflections, showing no evidence of isomorphism. The TG-DTA curves allowed to establish the stoichiometry of compounds as M(NH2SO3)2.xH2O, where M = Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ and x ranging from 1 to 4. Dehydration leads to the formation of stable anhydrous. In all cases the respective sulfates are formed as an intermediate. After consecutive steps of decomposition, the respective oxides were obtained: Mn3O4, CoO, NiO, CuO and ZnO. The TG-DTA curves are characteristic for each sample, with thermal events related to dehydration and ligand decomposition.

Metrics

Metrics Loading ...

Article Details

How to Cite
Luiz, J. M., & Nunes, R. S. (2020). Synthesis, characterization, and thermal behavior of amidosulfonates of transition metals in air and nitrogen atmosphere. Eclética Química, 45(4), 32–39. https://doi.org/10.26850/1678-4618eqj.v45.4.2020.p32-39
Section
Original articles

References

Index, M., Centennial edition, Merck & Co. Inc. Rahway, 1989.

Kamal, A., Babu, K. S., Hussaini, S. M. A., Srikanth, P. S., Balakrishna, M., Alarifi, A., Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines, Tetrahedron Letters 56 (31) (2015) 4619-4622. https://doi.org/10.1016/j.tetlet.2015.06.006.

Maksin, V. I., Standritchuk, O. Z., Solubility diagrams of the systems nickel sulfamate-water and cobalt sulfamate-water, Russian Journal of Applied Chemistry 80 (7) (2007) 1048-1054. https://doi.org/10.1134/S1070427207070063.

Budurov, S, Tzolova, G., Thermogravimetrische Untersuchung der thermischen Zersetzung von Amidosulfonaten einwertiger metalle, Thermochimica Acta 303 (1) (1997) 101-105. https://doi.org/10.1016/S0040-6031(97)00256-6.

Budurov, S., Tzolova, G., Bohatý, L., New structural phase transitions in potassium and sodium amidosulfonates, Thermochimica Acta 307 (1) (1997) 91-96. https://doi.org/10.1016/S0040-6031(97)00360-2.

Thege, I. K., DSC investigation of the thermal behaviour of (NH4)2SO4, NH4HSO4 and NH4NH2SO3, Thermochimica Acta 60 (2) (1983) 149-159. https://doi.org/10.1016/0040-6031(83)80265-2.

Stade, J., Held, P., Bohatý, L., Crystal Growth, Crystal Structure and Physical Properties of Lithium Sulfamate Li[NH2SO3], Crystal Research and Technology 36 (4-5) (2001) 347-360. https://doi.org/10.1002/1521-4079(200106)36:4/5%3C347::AID-CRAT347%3E3.0.CO;2-Q.

Haussühl, E., Haussühl, S., Elastic properties of sulfamic acid and sulfamates of Li, Na, K, Rb, Cs, Tl, NH4, C(NH2)3 and (CH3)3NCH2COOH, Zeitschrift Für Kristallografie 210 (4) (1995) 269-275. https://doi.org/10.1524/zkri.1995.210.4.269.

Shimizau, G. K. H., Enright, G. D., Ratclife, C. I., Rego, G. S., Reid, J. L., Ripmeester, J. A., Silver Sulfonates: An Unexplored Class of Layered Solids, Chemistry of Materials 10 (11) (1998) 3282-3283. https://doi.org/10.1021/cm980409b.

Shubnell, A. J., Kosnic, E. J., Squattrito, P. J., Structures of layered metal sulfonate salts: trends in coordination behavior of alkali, alkaline earth and transition metals, Inorganica Chimica Acta 216 (1-2) (1994) 102-112. https://doi.org/10.1016/0020-1693(93)03700-K.

Gunderman, B. J., Squatrito, P. J., Synthesis and Structures of Potassium and Rubidium Arenesulfonates, Journal Logo 33 (13) (1994) 2924-2931. https://doi.org/10.1021/ic00091a035.

Kosnic, E. J., McClymont, E. L., Hodder, R. A., Squattrito, P. J., Synthesis and structures of layered metal sulfonate salts, Inorganica Chimica Acta 201 (2) (1992) 143-151. https://doi.org/10.1016/S0020-1693(00)85325-6.

Jaishree, D., Kanchana, G., Kesavasamy, R., Investigations on Growth, Optical and Thermal Properties of Sulphamic Acid Single Crystals, Investigations on Growth, Optical and Thermal Properties of Sulphamic Acid Single Crystals 2014 (2014) 950467. https://doi.org/10.1155/2014/950467.

Brahmaji, B., Rajyalakshmi, S., Rao, T. K. V., Valluru S. R., Basha, S. K. E., Satyakamal, C., Veeraiah, V., Rao, K. R., Tb3+ added sulfamic acid single crystals with optimal photoluminescence properties for opto-electric devices, Journal of Science: Advanced Materials and Devices 3 (1) (2018) 68-76. https://doi.org/10.1016/j.jsamd.2017.12.002.

Wickleder, M. S., Syntheses, crystal structures, and thermal behavior of the rare earth amidosulfates M(NH2SO3)3·2H2O (M=Pr, Nd, Sm), Journal of Alloys and Compounds 303-304 (2000) 445-453. https://doi.org/10.1016/S0925-8388(00)00624-1.

Luiz, J. M., Nunes, R. S., Matos, J. R., Síntese, caracterização e comportamento térmico de amidossulfonatos de terras raras, Quimica Nova 36 (3) (2013) 426-430. https://doi.org/10.1590/S0100-40422013000300013.