Experimental and theoretical investigation of the IR spectra and thermochemistry of four isomers of 2-N,N-dimethylaminecyclohexyl 1-N’,N’-dimethylcarbamate
PDF (English)

Palavras-chave

density functional theory (DFT)
B3LYP
C11H22N2O2
IR spectra
thermochemical properties

Como Citar

Jalbout, A. F., Li, X.-H., Trzaskowski, B., & Raissi, ‪Heidar. (2006). Experimental and theoretical investigation of the IR spectra and thermochemistry of four isomers of 2-N,N-dimethylaminecyclohexyl 1-N’,N’-dimethylcarbamate. Eclética Química, 31(1), 53–62. https://doi.org/10.26850/1678-4618eqj.v31.1.2006.p53-62

Resumo

A combined experimental and Density functional theory (DFT) B3LYP/6-311+G* study on
the IR spectra of four stable isomers of 2-N,N-dimethylaminecyclohexyl 1-N’,N’-dimethylcarbamate
was performed. Our theoretical calculations reveal that two new isomers of this compound exist and
may be more stable than the known isomers. In addition the entropy, heat capacity, and the enthalpy
content of the stable isomers are computed by fitting the calculated data to a standard Shomate equa-
tion and IR spectra for the two new isomers are presented.
https://doi.org/10.26850/1678-4618eqj.v31.1.2006.p53-62
PDF (English)

Referências

K.P. Shaw, Y. Aracava, A. Akaike, J.W. Daly, D.L. Rickett,

E.X. Albuquerque Mol. Pharmacol. 28 (1985), 527.

M.B. Youdim, M. Weinstock, Cell. Mol. Neurobiol. 21

(2001), 555.

W.H. Beers, E. Reich, Nature 228 (1970) 917.

W.F. Souza, N. Kambe, N. Sonoda, J. Phys. Org. Chem. 9

(1996) 179.

H. Furukawa, T. Hamada, M.K. Hayashi, T. Haga, Y.

Muto, H. Hirota, S. Yokoyama, K. Nagasawa, M. Ishiguro,

Mol. Pharmacol. 62 (2002) 778.

P.R. Oliveira, F. Wiectzycoski, E.A. Basso, R.A.C.

Goncalves, R.M. Pontes, J. Mol. Struct. 657 (2003) 191.

J. Song, M.S. Gordon, C.A. Deakyne, W. Zheng, J. Phys.

Chem. A 108 (2004) 11419.

N. Tezer, J. Mol. Struct. (THEOCHEM) 714 (2005) 133.

W.E. Stewart, T.H. Siddal III, Chem. Rev. 70 (1970) 517.

K.B. Wiberg, P.R. Rablen, D.J. Rush, T.A. Keith, J. Am.

Chem. Soc. 117 (1995) 4261.

N.G. Vassilev, V.S. Dimitrov, J. Mol. Struct. 484 (1999) 39.

C. Cox, T. Lectka, Acc. Chem. Res. 33 (2000) 849.

Y.K. Kang, H.S. Park, J. Mol. Struct. (THEOCHEM)

(2004) 171.

C.Y. Yamagami, N. Takao, Y. Takeuchi, Aust. J. Chem.

(1986) 457.

C. Cox, T. Lectka, J. Org. Chem. 63 (1998) 2426.

P.R. Rablen, J. Org. Chem. 65 (2000) 7930.

E.A. Basso, R.M. Pontes, J. Mol. Struct. (THEOCHEM)

(2002) 199.

M.J. Deetz, C.C. Forbes, M. Jonas, J.P. Malerich, B.D.

Smith, O. Wiest, J. Org. Chem. 67 (2002) 3949.

B.D. Smith, D.M. Goodenough-Lashua, C.J.E. D’Souza,

K.J. Norton, L.M. Schmidt, J.C. Tung, Tetrahedron Lett. 45

(2004) 2747.

E. A. Basso, P. R. Oliveira, F. Wiectzycoski, R. M.

Pontes, B. C. Fiorin, Journal of Molecular Structure 753

(2005) 139.

M. J. Frisch et. Al. Gaussian 98, Revision A.6, Gaussian,

Inc., Pittsburgh PA, 1998.

A.D. Becke, J. Chem. Phys. 98 (1993), 5648.

C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988), 785.

C. Møller, M. S. Plesset, Phys. Rev. 46 (1934), 618.

P.J. Linstrom, W.G. Mallard, Eds., NIST Chemistry

WebBook, NIST Standard Reference Database Number 69,

July 2001, National Institute of Standards and Technology,

Gaithersburg MD, 20899 (http://webbook.nist.gov).

Creative Commons License
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química

Métricas

Carregando Métricas ...