Characterization of nimesulide and development of immediate release tablets
Main Article Content
Abstract
This paper aims to characterize nimesulide raw materials from different manufacturers and to develop immediate release tablets, in order to register a generic product. Also, raw material characteristics and the tablets final properties were investigated in order to establish a different specification for quality control. Two micronized and one non-micronized nimesulide samples were obtained from different manufacturers and were characterized by thermal analysis, spectroscopic techniques, morphological analysis, flowability and biopharmaceutical evaluation. The samples belong to the same polymorph. The formulations design and the choice of the production process were carried out based on the results obtained in the characterization assessments. The proposed formulations showed different dissolution behavior. One formulation was selected and then the dissolution was evaluated in different dissolution media containing varying concentrations of surfactant, in order to verify if the concentration of 2% (v/v) of polysorbate 80, recommended by the Brazilian Pharmacopoeia, would be overestimating the bioavailability of the drug. The results showed that the percentage of surfactant present in the dissolution medium directly impacts the amount of dissolved drug. The selected formulation demonstrated promising results to proceed with the bio batches manufacture and the pharmaceutical equivalence study.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Rainsford, K. D., Current status of the therapeutic uses and actions of the preferential cyclo-oxygenase-2 NSAID, nimesulide, Inflammopharmacology 14 (3-4) (2006) 120-37. https://doi.org/10.1007/s10787-006-1505-9.
Singla, A. K., Chawla, M., Singh, A., Review Nimesulide: some pharmaceutical and pharmacological aspects-an update, J. Pharm. Pharmacol. 52 (5) (2000) 467-486. https://doi.org/10.1211/0022357001774255.
Mircioiu, I., Anuta, V., Miron, D., Cojocaru, V., Orbesteanu, A. M., Mircioiu, C., In vitro dissolution of poorly soluble drugs in the presence of surface active agents - in vivo pharmacokinetics correlations. II. Nimesulide, Farmacia 61 (1) (2013) 88-102. http://www.revistafarmacia.ro/201301/issue12013art09.html.
Farmacopeia Brasileira, 5th ed. Brasília: Agência Nacional de Vigilância Sanitária; 2010.
Di Martino, P., Censi, R., Barthelemy, C., Gobetto, R., Joiris, E., Masic, A., Odou, P., Martelli, S., Characterization and compaction behaviour of nimesulide crystal forms, Int. J. Pharm. 342 (1-2) (2007) 137-44. https://doi.org/10.1016/j.ijpharm.2007.05.009.
Bergese, P., Bontempi, E., Colombo, I., Gervasoni, D., Depero, L. E., Microstructural investigation of nimesulide-crospovidone composites by X-ray diffraction and thermal analysis, Compos. Sci. Technol. 63 (8) (2003) 1197-1201. https://doi.org/10.1016/S0266-3538(03)00078-2.
Sanphui, P., Sarma, B., Nangia, A., Phase transformation in conformational polymorphs of nimesulide, J. Pharm. Sci. 100 (6) (2011) 2287-2299. https://doi.org/10.1002/jps.22464.
Abdelkader, H., Abdallah, O. Y., Salem, H. S., Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide, AAPS PharmSciTech 8 (3) (2007) E110–E117. https://doi.org/10.1208/pt0803065.
Dantu, A. S., Durai, R. V., Hari, B. N. V., Effect of impact and attrition milling on nimesulide for solubility enhancement, Int. J. App. Pharm. 5 (2) (2003) 1-7.
Paiva, R. E. F., Abbehausen, C., Gomes, A. F., Gozzo, F. C., Lustri, W. R., Formiga, A. L. B., Corbi, P. P., Synthesis, spectroscopic characterization, DFT studies and antibacterial assays of a novel silver(I) complex with the anti-inflammatory nimesulide, Polyhedron 36 (1) (2012) 112-119. https://doi.org/10.1016/j.poly.2012.02.002.
Agrawal, S., Ashokraj, Y., Bharatam, P. V., Pillai, O., Panchagnula, R., Solid-state characterization of rifampicin samples and its biopharmaceutic relevance, Eur. J. Pharm. Sci. 22 (2-3) (2004) 127-144. https://doi.org/10.1016/j.ejps.2004.02.011.
Honorio, T. S., Pinto, E. C., Rocha, H. V., Esteves, V. S., dos Santos, T. C., Castro, H. C., Rodrigues, C. R., de Sousa, V. P., Cabral, L. M., In vitro–in vivo correlation of efavirenz tablets using GastroPlus®, AAPS PharmSciTech. 14 (3) (2014) 1244–1254. https://doi.org/10.1208/s12249-013-0016-4.
Debnah, S., Suryanarayanan, R., Influence of processing-induced phase transformations on the dissolution of theophylline tablets, AAPS PharmSciTech. 5 (1) (2004) 1-11. https://doi.org/10.1208/pt050108.
Purcaru, S. O., Ionescu, M., Raneti, C., Anuta, V., Mircioiu, I., Belu, I., Study of nimesulide release from solid pharmaceutical formulations in tween 80 solutions, Curr. Health Sci. J. 36 (1) (2010) 42-49. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945268/.
Ruella, A. L. M., Araújo, M. B., Pereira, G., Desenvolvimento de um teste de dissolução para comprimidos de nimesulida em meio que assegure condições sink, Lat. Am. J. Pharm. 28 (5) (2009) 661-667. http://www.latamjpharm.org/trabajos/28/5/LAJOP_28_5_1_3_5K6E9AQ727.pdf.
Hetal, T., Bindesh, P., Sneha, T., A review on techniques for oral bioavailability enhancement of drugs, Int. J. Pharm. Sci. Rev. Res. 4 (3) (2010) 203-223. https://pdfs.semanticscholar.org/0dd6/cc180bdabeab5bc627dcbbff2567735f494f.pdf.
Joshi, J. T., A review on micronization techniques, J. Pharm. Sci. Technol. 3 (7) (2011) 651-681. http://www.onlinepharmacytech.info/docs/vol3issue8/JPST11-03-08-02.pdf.
The United States pharmacopeia. 36th revision: the national formulary. Washington DC: Rockville : United States Pharmacopeial Convention, 2013. 31st ed., 2013. ISBN: 9781936424122 1936424126.
Allen, F. H., The Cambridge Structural Database: a quarter of a million crystal structures and rising, Acta Cryst. B (58) (2002) 380-388. https://doi.org/10.1107/S0108768102003890.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A., Mercury CSD 2.0 - new features for the visualization and investigation of crystal structures, J. Appl. Cryst. 41 (2008) 466-470. https://doi.org/10.1107/S0021889807067908.
Ng, W. K., Kwek, J. W., Yuen, A., Tan, C. L., Tan, R., Effect of milling on DSC thermogram of excipient adipic acid, AAPS PharmSciTech 11 (1) (2010) 159-167. https://doi.org/10.1208/s12249-009-9372-5.
Moneghini, M., Kikic, I., Perissutti, B., Franceschinis, E., Cortesi, A., Characterisation of nimesulide–betacyclodextrins systems prepared by supercritical fluid impregnation, Eur. J. Pharm. Biopharm. 58 (2004) 637-644. https://doi.org/10.1016/j.ejpb.2004.04.004.
Paiva, R. E. F., Abbehausen, C., Bergamini, F., Thompson, A., Antonini, A. D., Lancellotti, M., Corbi, P. P., Investigating the inclusion of the Ag(I)-nimesulide complex into β-cyclodextrin: studies in solution and in the solid state, J. Inc. Phenom. Macrocycl. Chem. 79 (1-2) (2014) 225-235. https://doi.org/10.1007/s10847-013-0348-4.
Balasuwatthi, P., Dechabumphen, N., Saiwan, C., Scamehorn, J. F., Contact angle of surfactant solutions on precipitated surfactant surfaces. II. Effects of surfactant structure, presence of a subsaturated surfactant, pH, and counterion/surfactant ratio, J. Surf. Deterg. 7 (1) (2004) 31-40. https://doi.org/10.1007/s11743-004-0285-y.
Puri, V., Dantuluri, A. K., Kumar, M., Karar, N., Bansal, A. K., Wettability and surface chemistry of crystalline and amorphous forms of a poorly water soluble drug, Eur. J. Pharm. Sci. 40 (2-12) (2010) 84-93. https://doi.org/10.1016/j.ejps.2010.03.003.
Shete, G., Puri, V., Kumar, L., Bansal, A. K., Solid state characterization of commercial crystalline and amorphous atorvastatin calcium samples, AAPS PharmSciTech 11 (2) (2010) 598-609. https://doi.org/10.1208/s12249-010-9419-7.
Vidal, N. L. G., Castro, S. G., Bruni, S. F. S., Allemandi, D. A., Palma, S. D., Albendazole solid dispersions: influence of dissolution medium composition on in vitro drug release, Dis. Technol. (2014) 42-47. https://doi.org/10.14227/DT210214P42.
Park S. H., Choi H. K., The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs, Int. J. Pharm. 32 (1-2) (2006) 35-41. https://doi.org/10.1016/j.ijpharm.2006.05.004.
Shah, R. B., Tawakkul, M. A., Khan, M. A., Comparative evaluation of flow for pharmaceutical powders and granules, AAPS PharmSciTech 9 (1) (2008) 250-258. https://doi.org/10.1208/s12249-008-9046-8.
Rigato, H. M., Borges, B. C., Sverdloff, C. E., Moreno, R. A., Orpineli, E., Borges, N. C., Bioavailability of two oral suspension and two oral tablet formulations of nimesulide 100 mg in healthy Brazilian adult subjects, Int. J. Clin. Pharm. Ther. 48 (3) (2010) 233-242. https://europepmc.org/abstract/med/20197019.
Postali, M., Estudo de bioequivalência – proposição de um modelo animal em ratos para avaliação preditiva da biodisponibilidade de formulações contendo nimesulida em humanos. [dissertação]. Toledo (SC): Universidade Federal de Santa Catarina; 2011.