Direct determination of arsenobetaine and total As in robalo fish liver and tuna fish candidate reference material by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS)
Main Article Content
Abstract
This work describes a simple and rapid screening method for direct speciation of arsenobetaine (AsB) in tuna fish tissue and total As in tuna fish tissue and robalo liver using SLS-GF AAS. All procedures were proposed after careful optimization of pyrolysis and evaluation of chemical modifiers. Best results for total As were acquired using 25 µg Pd + 15 µg Mg + 0.1% w/v Triton X-100 in tuna fish (4.4 ± 0.3 mg kg-1) and 100 µg Pd + 0.1 % w/v Triton X-100 solution in robalo liver (10.3 ± 0.6 mg kg-1) as chemical modifiers. The direct speciation of AsB (3.6 ± 0.4 mg kg-1) in tuna fish was achieved when 5 µg Pd + 3 µg Mg + 0.1% w/v Triton X-100 was used as a chemical modifier. Accuracy was verified using a tuna fish certified reference material (CRM BCR 627), with statistically equivalent concentrations (Student’s t-test) for both total As and AsB.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Leermakers, M., Baeyens, W., De Gieter M., Smedts, B., Meert, C., De Bisschop, H. C., Morabito, R., Quevauviller, P., Toxic arsenic compounds in environmental samples: Speciation and validation, Trends Anal. Chem. 25 (1) (2006) 1-10. https://doi.org/10.1016/j.trac.2005.06.004.
Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., Oh, S., Ahmad, Human health implications, risk assessment and remediation of As-contaminated water: A critical review, Sci. Total Environ. 601-602 (2017) 756-769. https://doi.org/10.1016/j.scitotenv.2017.05.223.
Yunus, F. M., Khan, S., Chowdhury, P., Milton, A. H., Hussain, S., Rahman, M., A review of groundwater arsenic contamination in Bangladesh: the millennium development goal era and beyond, Int. J. Environ. Res. Public Health. 13 (215) (2016) 1-18. https://doi.org/10.3390/ijerph13020215.
McSheehy, S., Szpunar, J., Morabito, R., Quevauviller, P., The speciation of arsenic in biological tissues and the certification of reference material for quality control, Trends Anal. Chem. 22 (4) (2003) 191-209. https://doi.org/10.1016/S0165-9936(03)00404-7.
Ysart, G., Miller, P., Croasdale, M., Crews, H., Robb, P., Baxter, M., L’Argy, C., Harrison, N., 1997 UK total diet study: aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc, Food Addit. Contam. 17 (9) (2000) 775-786. https://doi.org/10.1080/026520300415327.
Cfia - Canadian Food Inspection Agency, Certification Requirements: China, 2017. http://www.inspection.gc.ca/food/fish-and-seafood/exports/by-jurisdiction/china/eng/1373555071317/1373555185449.
Comlaw, Australia New Zealand Food Standards Code: Standard 1.4.1: Contaminants and Natural Toxicants. http://www.comlaw.gov.au/details/f2011c00121.
Pétursdóttir, Á. H., Gunnlaugsdóttir, H., Jörundsdóttir, H., Raab, A., Krupp, E. M., Feldmann, J., Determination of inorganic arsenic in seafood: Emphasizing the need for certified reference materials, Pure Appl Chem. 84 (2) (2012) 191-202. https://doi.org/10.1351/PAC-CON-11-10-03.
The Commission of the European Communities, Commission directive 2009/141/EC of 23 November 2009 - amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, theobromine, Datura sp., Ricinus communis L., Croton tiglium L. and Abrus precatorius L. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0141.
ABNT, Associação Brasileira de Normas Técnicas, “Termos e definições relacionados com materiais de referência”, 1 ed. Rio de Janeiro, 2000a (ABNT ISO Guia 30).
Zschunke, A., The role of reference materials in analytical chemistry, Accred. Qual. Assur. 8 (2003) 247-251.
Comar - International database for certified reference materials. http://www.comar.bam.de/en/. Accessed July 20, 2018.
Chelegão, R., Carioni, V.M.O., Naozuka, J., Nomura, C. S., Feasibility of using AAS for the characterization of a tuna fish candidate reference material for total Hg and methyl-Hg measurement, J. Braz. Chem. Soc. 27 (4) (2016) 712-718. https://doi.org/10.5935/0103-5053.20150320.
Carioni, V. M. O., Nomura, C. S., Yu, L. L., Zeisler, R., Use of neutron activation analysis and LC–ICP-MS in the development of candidate reference materials for As species determination, J. Radioanal. Nucl. Chem. 299 (2014) 241-248. https://doi.org/10.1007/s10967-013-2790-6.
Fang, Y., Pan, Y., Li, P., Xue, M., Pei, F., Yang, W., Maa, N., Hua, Q., Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry, Food Chem. 213 (2016) 609-615. https://doi.org/10.1016/j.foodchem.2016.07.003.
Jia, X., Gong, D., Wang, J., Huang, F., Duan, T., Zhang, X., Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination, Talanta. 160 (2016) 437-443. https://doi.org/10.1016/j.talanta.2016.07.050.
Kalantzi, I., Mylona, K., Sofoulaki, K., Tsapakis, M., Pergantis, S.A., Arsenic speciation in fish from Greek coastal areas, J. Environ. Sci. (2017). https://doi.org/10.1016/j.jes.2017.03.033.
Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health, John Wiley & Sons, 2005, p. 488.
Nomura, C. S., Silva, C. S., Nogueira, A. R. A., Oliveira P. V., Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid electrothermal atomic absorption spectrometry, Spectrochim. Acta Part B. 60 (5) (2005) 673-680. https://doi.org/10.1016/j.sab.2005.02.021.
Anawar, H. M., Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry, Talanta 88 (2012) 30-42. https://doi.org/10.1016/j.talanta.2011.11.068.
Serafimovski, I., Karadjova, I. B., Stafilov, T., Tsalev, D. L., Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry, Microchem. J. 83 (2006) 55-60. https://doi.org/10.1016/j.microc.2006.01.021.
Shah, A. Q., Kazi, T. G., Baig, J. A., Arain, M. B., Afridi, H. I., Kandhro, G. A., Wadhwa, S. K., Kolachi, N. F., Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry (ETAAS), Food Chem. 119 (2010) 840-844. https://doi.org/10.1016/j.foodchem.2009.08.041.
Zmozinski, A. V., Llorente-Mirandes, T., Damin, I. C. F., López-Sánchez, J. F., Vale M. G. R., Welz, B., Silva, M. M., Direct solid sample analysis with graphite furnace atomic absorption spectrometry-A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood, Talanta. 134 (2015) 224-231. https://doi.org/10.1016/j.talanta.2014.11.009.
Mihucz, V. G., Bencs, L., Koncz, K., Tatár, E., Weiszburg, T., Záray, G., Fast arsenic speciation in water by onsite solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy. (2017). https://doi.org/10.1016/j.sab.2016.12.010.
López-García, I., Briceño, M., Hernández-Córdoba, M., Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry, Anal. Chim. Acta, 699 (2011) 11-17. https://doi.org/10.1016/j.aca.2011.05.005.
Carioni, V. M. O, Chelegão, R., Naozuka, J., Nomura, C. S., Feasibility study for the preparation of a tuna fish candidate reference material for total As determination, Accred. Qual. Assur. 16 (2011) 453-458. https://doi.org/10.1007/s00769-011-0796-8.
Naozuka, J., Nomura, C. S., Total determination and direct chemical speciation of Hg in fish by solid sampling GF AAS, J. Anal. At. Spectrom. 26 (2011) 2257-2262. https://doi.org/10.1039/C1JA10188A.
Naozuka, J., Oliveira, P. V., Minimization of Sample Pretreatment for Al, Cu and Fe Determination in Coconut Water by Electrothermal Atomic Absorption Spectrometry, J. Braz. Chem. Soc. 17 (2006) 521-526. https://doi.org/10.1590/S0103-50532006000300014.
Pereira, E. R., Almeida, T. S., Borges, D. L. G., Carasek, E., Welz, B., Feldmann, J., Menoyo, J. C., Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry, Talanta 150 (2016) 142-147. https://doi.org/10.1016/j.talanta.2015.12.036.
Maier, E. A., Demesmay, C., Olle, M., Lamotte, A., Lagarde, F., Heimburger, R., Leroy, M. J. F., Asfari, Z., Muntau, H., The certification of the contents (mass fractions) of arsenobetaine in solution (CRM 626) and of total arsenic, arsenobetaine, dimethylarsinic acid in tuna fish tissue (CRM 627), Luxembourg: Office for Official Publications of the European Communities, 1997.