Direct determination of arsenobetaine and total As in robalo fish liver and tuna fish candidate reference material by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS)

Main Article Content

Carla Maíra Bossu
Vivian Montes de Oca Carioni
Juliana Naozuka
Pedro Vitoriano de Oliveira
Cassiana Seimi Nomura

Abstract

This work describes a simple and rapid screening method for direct speciation of arsenobetaine (AsB) in tuna fish tissue and total As in tuna fish tissue and robalo liver using SLS-GF AAS. All procedures were proposed after careful optimization of pyrolysis and evaluation of chemical modifiers. Best results for total As were acquired using 25 µg Pd + 15 µg Mg + 0.1% w/v Triton X-100 in tuna fish (4.4 ± 0.3 mg kg-1) and 100 µg Pd + 0.1 % w/v Triton X-100 solution in robalo liver (10.3 ± 0.6 mg kg-1) as chemical modifiers. The direct speciation of AsB (3.6 ± 0.4 mg kg-1) in tuna fish was achieved when 5 µg Pd + 3 µg Mg + 0.1% w/v Triton X-100 was used as a chemical modifier. Accuracy was verified using a tuna fish certified reference material (CRM BCR 627), with statistically equivalent concentrations (Student’s t-test) for both total As and AsB.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bossu, C. M., Carioni, V. M. de O., Naozuka, J., Oliveira, P. V. de, & Nomura, C. S. (2019). Direct determination of arsenobetaine and total As in robalo fish liver and tuna fish candidate reference material by slurry sampling graphite furnace atomic absorption spectrometry (SLS-GF AAS). Eclética Química, 44(2), 37–44. https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p37-44
Section
Original articles

References

Leermakers, M., Baeyens, W., De Gieter M., Smedts, B., Meert, C., De Bisschop, H. C., Morabito, R., Quevauviller, P., Toxic arsenic compounds in environmental samples: Speciation and validation, Trends Anal. Chem. 25 (1) (2006) 1-10. https://doi.org/10.1016/j.trac.2005.06.004.

Shakoor, M. B., Nawaz, R., Hussain, F., Raza, M., Ali, S., Rizwan, M., Oh, S., Ahmad, Human health implications, risk assessment and remediation of As-contaminated water: A critical review, ‎Sci. Total Environ. 601-602 (2017) 756-769. https://doi.org/10.1016/j.scitotenv.2017.05.223.

Yunus, F. M., Khan, S., Chowdhury, P., Milton, A. H., Hussain, S., Rahman, M., A review of groundwater arsenic contamination in Bangladesh: the millennium development goal era and beyond, Int. J. Environ. Res. Public Health. 13 (215) (2016) 1-18. https://doi.org/10.3390/ijerph13020215.

McSheehy, S., Szpunar, J., Morabito, R., Quevauviller, P., The speciation of arsenic in biological tissues and the certification of reference material for quality control, Trends Anal. Chem. 22 (4) (2003) 191-209. https://doi.org/10.1016/S0165-9936(03)00404-7.

Ysart, G., Miller, P., Croasdale, M., Crews, H., Robb, P., Baxter, M., L’Argy, C., Harrison, N., 1997 UK total diet study: aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc, Food Addit. Contam. 17 (9) (2000) 775-786. https://doi.org/10.1080/026520300415327.

Cfia - Canadian Food Inspection Agency, Certification Requirements: China, 2017. http://www.inspection.gc.ca/food/fish-and-seafood/exports/by-jurisdiction/china/eng/1373555071317/1373555185449.

Comlaw, Australia New Zealand Food Standards Code: Standard 1.4.1: Contaminants and Natural Toxicants. http://www.comlaw.gov.au/details/f2011c00121.

Pétursdóttir, Á. H., Gunnlaugsdóttir, H., Jörundsdóttir, H., Raab, A., Krupp, E. M., Feldmann, J., Determination of inorganic arsenic in seafood: Emphasizing the need for certified reference materials, Pure Appl Chem. 84 (2) (2012) 191-202. https://doi.org/10.1351/PAC-CON-11-10-03.

The Commission of the European Communities, Commission directive 2009/141/EC of 23 November 2009 - amending Annex I to Directive 2002/32/EC of the European Parliament and of the Council as regards maximum levels for arsenic, theobromine, Datura sp., Ricinus communis L., Croton tiglium L. and Abrus precatorius L. http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009L0141.

ABNT, Associação Brasileira de Normas Técnicas, “Termos e definições relacionados com materiais de referência”, 1 ed. Rio de Janeiro, 2000a (ABNT ISO Guia 30).

Zschunke, A., The role of reference materials in analytical chemistry, Accred. Qual. Assur. 8 (2003) 247-251.

Comar - International database for certified reference materials. http://www.comar.bam.de/en/. Accessed July 20, 2018.

Chelegão, R., Carioni, V.M.O., Naozuka, J., Nomura, C. S., Feasibility of using AAS for the characterization of a tuna fish candidate reference material for total Hg and methyl-Hg measurement, J. Braz. Chem. Soc. 27 (4) (2016) 712-718. https://doi.org/10.5935/0103-5053.20150320.

Carioni, V. M. O., Nomura, C. S., Yu, L. L., Zeisler, R., Use of neutron activation analysis and LC–ICP-MS in the development of candidate reference materials for As species determination, J. Radioanal. Nucl. Chem. 299 (2014) 241-248. https://doi.org/10.1007/s10967-013-2790-6.

Fang, Y., Pan, Y., Li, P., Xue, M., Pei, F., Yang, W., Maa, N., Hua, Q., Simultaneous determination of arsenic and mercury species in rice by ion-pairing reversed phase chromatography with inductively coupled plasma mass spectrometry, Food Chem. 213 (2016) 609-615. https://doi.org/10.1016/j.foodchem.2016.07.003.

Jia, X., Gong, D., Wang, J., Huang, F., Duan, T., Zhang, X., Arsenic speciation in environmental waters by a new specific phosphine modified polymer microsphere preconcentration and HPLC-ICP-MS determination, Talanta. 160 (2016) 437-443. https://doi.org/10.1016/j.talanta.2016.07.050.

Kalantzi, I., Mylona, K., Sofoulaki, K., Tsapakis, M., Pergantis, S.A., Arsenic speciation in fish from Greek coastal areas, J. Environ. Sci. (2017). https://doi.org/10.1016/j.jes.2017.03.033.

Cornelis, R., Crews, H., Caruso, J., Heumann, K.G., Handbook of Elemental Speciation II: Species in the Environment, Food, Medicine & Occupational Health, John Wiley & Sons, 2005, p. 488.

Nomura, C. S., Silva, C. S., Nogueira, A. R. A., Oliveira P. V., Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid electrothermal atomic absorption spectrometry, Spectrochim. Acta Part B. 60 (5) (2005) 673-680. https://doi.org/10.1016/j.sab.2005.02.021.

Anawar, H. M., Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry, Talanta 88 (2012) 30-42. https://doi.org/10.1016/j.talanta.2011.11.068.

Serafimovski, I., Karadjova, I. B., Stafilov, T., Tsalev, D. L., Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry, Microchem. J. 83 (2006) 55-60. https://doi.org/10.1016/j.microc.2006.01.021.

Shah, A. Q., Kazi, T. G., Baig, J. A., Arain, M. B., Afridi, H. I., Kandhro, G. A., Wadhwa, S. K., Kolachi, N. F., Determination of inorganic arsenic species (As3+ and As5+) in muscle tissues of fish species by electrothermal atomic absorption spectrometry (ETAAS), Food Chem. 119 (2010) 840-844. https://doi.org/10.1016/j.foodchem.2009.08.041.

Zmozinski, A. V., Llorente-Mirandes, T., Damin, I. C. F., López-Sánchez, J. F., Vale M. G. R., Welz, B., Silva, M. M., Direct solid sample analysis with graphite furnace atomic absorption spectrometry-A fast and reliable screening procedure for the determination of inorganic arsenic in fish and seafood, Talanta. 134 (2015) 224-231. https://doi.org/10.1016/j.talanta.2014.11.009.

Mihucz, V. G., Bencs, L., Koncz, K., Tatár, E., Weiszburg, T., Záray, G., Fast arsenic speciation in water by onsite solid phase extraction and high-resolution continuum source graphite furnace atomic absorption spectrometry, Spectrochimica Acta Part B: Atomic Spectroscopy. (2017). https://doi.org/10.1016/j.sab.2016.12.010.

López-García, I., Briceño, M., Hernández-Córdoba, M., Non-chromatographic screening procedure for arsenic speciation analysis in fish-based baby foods by using electrothermal atomic absorption spectrometry, Anal. Chim. Acta, 699 (2011) 11-17. https://doi.org/10.1016/j.aca.2011.05.005.

Carioni, V. M. O, Chelegão, R., Naozuka, J., Nomura, C. S., Feasibility study for the preparation of a tuna fish candidate reference material for total As determination, Accred. Qual. Assur. 16 (2011) 453-458. https://doi.org/10.1007/s00769-011-0796-8.

Naozuka, J., Nomura, C. S., Total determination and direct chemical speciation of Hg in fish by solid sampling GF AAS, J. Anal. At. Spectrom. 26 (2011) 2257-2262. https://doi.org/10.1039/C1JA10188A.

Naozuka, J., Oliveira, P. V., Minimization of Sample Pretreatment for Al, Cu and Fe Determination in Coconut Water by Electrothermal Atomic Absorption Spectrometry, J. Braz. Chem. Soc. 17 (2006) 521-526. https://doi.org/10.1590/S0103-50532006000300014.

Pereira, E. R., Almeida, T. S., Borges, D. L. G., Carasek, E., Welz, B., Feldmann, J., Menoyo, J. C., Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry, Talanta 150 (2016) 142-147. https://doi.org/10.1016/j.talanta.2015.12.036.

Maier, E. A., Demesmay, C., Olle, M., Lamotte, A., Lagarde, F., Heimburger, R., Leroy, M. J. F., Asfari, Z., Muntau, H., The certification of the contents (mass fractions) of arsenobetaine in solution (CRM 626) and of total arsenic, arsenobetaine, dimethylarsinic acid in tuna fish tissue (CRM 627), Luxembourg: Office for Official Publications of the European Communities, 1997.