A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts

Main Article Content

Hitler Louis
Ozioma Udochukwu Akakuru
Philip Monday
Oyebanji Oluwatomisin Funmilayo

Abstract

Significantly, global warming which is caused by CO2 emission and energy shortage are global problems resulting from artificial photosynthesis because it required many functions (light harvesting, Z water, and oxidation scheme). Therefore, photocatalytic systems development for CO2 reduction is germane in this field. Metal complexes molecular catalyst have become prevalent homogeneous catalysts for carbon dioxide (CO2) photocatalytic reduction since it was initially known as CO2 reduction catalysts in the 70s and the 80s, while utmost part involved macrocyclic cobalt(II) and nickel(II) complexes. This review article presents a broad understanding on some active catalysts recently reported as a metal complex molecular catalytic schemes for CO2 reduction, alongside catalytic activity, stability, selectivity under electro-reduction, and photoreduction circumstances. The progress of in situ spectroelectrochemical methods, typically supported via theoretical calculations, helped to access this know-how by providing information which enabled researchers to acquire more in-depth perception into unveiling the catalytic reaction and mechanisms intermediates.

Metrics

Metrics Loading ...

Article Details

How to Cite
Louis, H., Akakuru, O. U., Monday, P., & Funmilayo, O. O. (2019). A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Eclética Química, 44(1), 11–39. https://doi.org/10.26850/1678-4618eqj.v44.1.2019.p11-39
Section
Review

References

Qiao, J., Liu, Y., Hong, F., Zhang, J., A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43 (2) (2014) 631-675. https://doi.org/10.1039/c3cs60323g.

Liu, G., Hoivik, N., Wang, K., Jakobsen, H., Engineering TiO2 nanomaterials for CO2 conversion/solar fuels, Sol. Energ. Mat. Sol. C. (105) (2012) 53-68. https://doi.org/10.1016/j.solmat.2012.05.037.

Costentin, C., Robert, M., Savéant, J.-M., Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion, Acc. Chem. Res. 48 (12) (2015) 2996-3006. https://doi.org/10.1021/acs.accounts.5b00262.

Zhang, Y., Jacobs, G., Sparks, D. E., Dry, M. E., Davis, B. H., CO and CO2 hydrogenation study on supported cobalt Fischer-Tropsch synthesis catalysts, Catal. Today 71 (3-4) (2002) 411-418. https://doi.org/10.1016/S0920-5861(01)00468-0.

Lu, Q., Rosen, J., Zhou, Y., Hutchings, G. S., Kimmel, Y. C., Chen, J. G., Jiao, F., A selective and efficient electrocatalyst for carbon dioxide reduction, A Nat. Commun. (2014) 5. https://doi.org/3242.10.1038/ncomms4242.

Nie, X., Esopi, M. R., Janik, M. J., Asthagiri, A., Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps, Angew. Chem. 52 (9) (2013) 2459-2462. https://doi.org/10.1002/anie.201208320.

Lu, Q., Rosen, J., Jiao, F., Nanostructured metallic electrocatalysts for carbon dioxide reduction, Chem. Cat. Chem. 7 (1) (2015) 38-47. https://doi.org/10.1002/cctc.201402669.

Hori, Y., Electrochemical CO2 Reduction on Metal Electrodes. In: Modern Electrochemistry, vol. 42, Vayenas, C. G., White, R. E., Gamboa-Aldeco, M. E., Eds.; Springer New York: New York, NY, 2008; pp 89-189.

Liu, X., Ye, L., Liu, S., Li, Y., Ji, X., Photocatalytic Reduction of CO2 by ZnO Micro/nanomaterials with Different Morphologies and Ratios of {0001} Facets, Scientific Reports volume 6, Article number: 38474 (2016). https://doi.org/10.1038/srep38474.

Chen, Y., Kanan, M. W. J., Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts, J. Am. Chem. Soc. 134 (4) (2012) 1986-1989. https://doi.org/10.1021/ja2108799.

Asadi, M., Kumar, B., Behranginia, A., Rosen, B. A., Baskin, A., Repnin, N., Pisasale, D., Phillips, P., Zhu, W., Haasch, R., Klie, R. F., Král, P., Abiade, J., Salehi-Khojin, A., Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun. 5 (2014) Article number: 4470. https://doi.org/10.1038/ncomms5470.

Asadi, M., Kim, K., Liu, C., Addepalli, A. V., Abbasi, P., Yasaei, P., Phillips, P., Behranginia, A., Cerrato, J. M., Haasch, R., Zapol, P., Kumar, B., Klie, R. F., Abiade, J., Curtiss, L. A., Salehi-Khojin, A., Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353 (6298) (2016) 467-470. https://doi.org/10.1126/science.aaf4767.

Collin, J. P., Sauvage, J. P., Electrochemical reduction of carbon dioxide mediated by molecular catalysts, Coord. Chem. Rev. 93 (2) (1989) 245-268. https://doi.org/10.1016/0010-8545(89)80018-9.

Savéant, J.-M., Molecular catalysis of electrochemical reactions. Mechanistic aspects, Chem. Rev. 108 (7) (2008) 2348-2378. https://doi.org/10.1021/cr068079z.

Takeda, H., Cometto, C., Ishitani, O., Robert, M., Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction, ACS Catal. 7 (1) (2017) 70-88. https://doi.org/10.1021/acscatal.6b02181.

Li, L., Yan, J., Wang, T., Zhao, Z. J., Zhang, J., Gong, J., Guan, N., Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production, Nat. Commun. 6 article number: 5881 (2015). https://doi.org/10.1038/ncomms6881.

Wang, J. C., Zhang, L., Fang, W. X., Ren, J., Li, Y. Y., Yao, H. C., Wang, J. S., Li, Z. J., Enhanced photoreduction CO2 activity over direct z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation, ACS Appl. Mater. Interfaces 7 (16) (2015) 8631-8639. https://doi.org/10.1021/acsami.5b00822.

Kudo, A., Miseki, Y., Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38 (1) (2009) 253-278. https://doi.org/10.1039/b800489g.

Hisatomi, T., Kubota, J., Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520-7535. https://doi.org/10.1039/C3CS60378D.

Ma, Y., Wang, X., Jia, Y., Chen, X., Han, H., Li, C., Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev. 114 (19) (2014) 9987-10043. https://doi.org/10.1021/cr500008u.

Kang, D., Kim, T. W., Kubota, S. R., Cardiel, A. C., Cha, H. G., Choi, K. S., Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting, Chem. Rev. 115 (23) (2015) 12839-12887. https://doi.org/10.1021/acs.chemrev.5b00498.

Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., Ye, J., Nano-photocatalytic materials: possibilities and challenges, Adv. Mater. 24 (2) (2012) 229-251. https://doi.org/10.1002/adma.201102752.

Ran, J., Zhang, J., Yu, J., Jaroniec, M., Qiao, S. Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (22) (2014) 7787-7812. https://doi.org/10.1021/jacs.5b04186.

Chang, X., Wang, T., Zhang, P., Zhang, J., Li, A., Gong, J., Enhanced surface reaction kinetics and charge separation of p–n heterojunction Co3O4/BiVO4 photoanodes, J. Am. Chem. Soc. 137 (26) (2015) 8356-8359. https://doi.org/10.1021/jacs.5b04186.

England, J., Bill, E., Weyhermüller, T., Neese, F., Atanasov, M., Wieghardt, K., Molecular and electronic structures of homoleptic six-coordinate cobalt(I) complexes of 2,2':6',2"-terpyridine, 2,2'-bipyridine, and 1,10-phenanthroline. An experimental and computational study, Inorg. Chem. 54 (24) (2015) 12002-12018. https://doi.org/10.1021/acs.inorgchem.5b02415.

Wang, M., Weyhermüller, T., Bill, E., Ye, S., Wieghardt, K., Structural and spectroscopic characterization of rhenium complexes containing neutral, monoanionic, and dianionic ligands of 2, 2′-bipyridines and 2,2′:6,2″-Terpyridines: An Experimental and Density Functional Theory (DFT)-Computational Study, Inorg. Chem. 55 (10) (2016) 5019-5036. https://doi.org/10.1021/acs.inorgchem.6b00609.

Wang, M., England, J., Weyhermu, T., Wieghardt, K., Molecular and electronic structures of the members of the electron transfer series [Mn(bpy)3]n (n = 2+, 1+, 0, 1−) and [Mn(tpy)2]m (m = 4+, 3+, 2+, 1+, 0). An experimental and density functional theory study, Inorg. Chem. 53 (4) (2014) 2276-2287. https://doi.org/10.1021/ic4029854.

Scarborough, C. C., Lancaster, K. M., DeBeer, S., Weyhermueller, T., Sproules, S., Wieghardt, K., Experimental fingerprints for redox-active terpyridine in [Cr(tpy)2](PF6)n (n = 3–0), and the remarkable electronic structure of [Cr(tpy)2]1–, Inorg. Chem. 51 (6) (2012) 3718-3732. https://doi.org/10.1021/ic2027219.

Paddon, C. A., Atobe, M., Fuchigami, T., He, P., Watts, P., Haswell, S. J., Pritchard, G. J., Bull, S. D., Marken, F. J., Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses, Appl. Electrochem. 36 (6) (2006) 617-634. https://doi.org/10.1007/s10800-006-9122-2.

Pütter, H., Organic Electrochemistry, 4th ed., Lund, H., Hammerich, O., Eds., Marcel Dekker: New York, 2001; 1259-1308.

Frontana-Uribe, B. A., Little, R. D., Ibanez, J. G., Palma, A., Vasquez-Medrano, R., Organic electrosynthesis: a promising green methodology in organic chemistry, Green Chem. 12 (2010) 2099-2119. https://doi.org/10.1039/C0GC00382D.

Tatin, A., Comminges, C., Kokoh, B., Costentin, C., Robert, M., Savéant, J.-M., Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials, Proc. Natl. Acad. Sci. U. S. A. 113 (20) (2016) 5526-5529. https://doi.org/10.1073/pnas.1604628113.

Parajuli, R., Gerken, J. B., Keyshar, K., Sullivan, I., Sivasankar, N., Teamey, K., Stahl, S. S., Cole, E. B, Integration of anodic and cathodic catalysts of earth-abundant materials for efficient, scalable CO2 reduction, Top. Catal. 58 (1) (2015) 57-66. https://doi.org/10.1007/s11244-014-0345-x.

Kim, B., Ma, S., Molly Jhong, H.-R., Kenis, P. J. A., Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer, Electrochim. Acta 166 (2015) 271-276. https://doi.org/10.1016/j.electacta.2015.03.064.

Luc, W., Rosen, J., Jiao, F., An Ir-based anode for a practical CO2 electrolyzer, Catal. Today 288 (2016) 79-84. https://doi.org/10.1016/j.cattod.2016.06.011.

Sebastián, D., Palella, A., Baglio, V., Spadaro, L., Siracusano, S., Negro, P., Niccoli, F., Arico, A. S., CO2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials, Electrochim. Acta 241 (2017) 28-40. https://doi.org/10.1016/j.electacta.2017.04.119.

Benson, E. E., Kubiak, C. P., Sathrum, A. J., Smieja, J. M., Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem. Soc. Rev. 38 (1) (2009) 89-99. https://doi.org/10.1039/b804323j.

Llorente, M. J., Nguyen, B. H., Kubiak, C. P., Moeller, K. D. J., Paired electrolysis in the simultaneous production of synthetic intermediates and substrates, J. Am. Chem. Soc. 138 (46) (2016) 15110-15113. https://doi.org/10.1021/jacs.6b08667.

Mascetti, J., Carbon dioxide as a chemical feedstock paired electrolysis in the simultaneous production of synthetic intermediates and substrates. In: Carbon dioxide as a chemical feedstock, Aresta, M., Ed., Wiley-VCH, Weinheim 2010, chapter: 4th, pp.55-88.

Gibson, D. H., Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships?, Coord. Chem. Rev. 185 (1) (1999) 335-355. https://doi.org/10.1016/S0010-8545(99)00021-1.

Goedecke, C., Hillebrecht, P., Uhlemann, T., Haunschild, R., Frenking, G., The Dewar–Chatt–Duncanson model reversed — Bonding analysis of group-10 complexes [(PMe3)2M–EX3] (M = Ni, Pd, Pt; E = B, Al, Ga, In, Tl; X = H, F, Cl, Br, I), Can. J. Chem. 87 (10) (2009) 1470-1479. https://doi.org/10.1139/V09-099.

Francke, R., Schille, B., Roemelt, M., Homogeneously catalyzed electroreduction of carbon dioxide-methods, mechanisms, and catalysts, Chem. Rev. 118 (9) (2018) 4631-4701. https://doi.org/10.1021/acs.chemrev.7b00459.

Eisenberg, R., Hendrickson, D. E., The binding and activation of carbon monoxide, carbon dioxide, and nitric oxide and their homogeneously catalyzed reactions, Adv. Catal. 28 (14) (1979) 79-172. https://doi.org/10.1016/S0360-0564(08)60134-0.

(a) Herskovitz, T., Carbon dioxide coordination chemistry. 3. Adducts of carbon dioxide with iridium (I) complexes, J. Am. Chem. Soc. 99 (7) (1977) 2391-2392. https://doi.org/10.1021/ja00449a087; (b) Calabrese, J. C., Herskovitz, T., Kinney, J. B., Carbon dioxide coordination chemistry. 5. The preparation ans structure of the rhodium complex Rh(1-CO2)(Cl)(diars)2, J. Am. Chem. Soc. 105 (1983) 5914-5915. https://doi.org/10.1021/ja00356a033.

Aresta, M., Nobile, C. F., Albano, V. G., Forni, E., Manassero, M., New nickel-carbon dioxide complex: synthesis, properties, and crystallographic characterization of (carbon dioxide)-bis(tricyclohexylphosphine)nickel, J. Chem. Soc. Chem. Commun. 15 (1975) 636-637. https://doi.org/10.1039/C39750000636.

Karsch, H. H., Funktionelle Trimethylphosphinderivate, III. Ambivalentes Verhalten von Tetrakis (trimethylphosphin) eisen: Reaktion mit CO2, Chem. Ber. 110 (6) (1977) 2213-2221. https://doi.org/10.1002/cber.19771100619.

Komiya, S., Akita, M., Kasuga¸ N., Hirano¸ M., Fukuoka¸ A., Synthesis, structure and reactions of a carbon dioxide complex of iron (0) containing 1,2-bis(diethylphosphino)ethane ligands, J. Chem. Soc. Chem. Commun. 9 (1994) 1115-1116. https://doi.org/10.1039/C39940001115.

Lewis, N. S., Nocera, D. G., Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. 103 (43) (2006) 15729-15735. https://doi.org/10.1073/pnas.0603395103.

a) Qiao, J., Liu, Y., Hong, F., Zhang, J., A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev., 43 (2014) 631-675. https://doi.org/10.1039/c3cs60323g; b) Portenkirchner, E., Oppelt, K., Egbe, D. A. M., Knör G., Sariçiftçi, N. S., Electro-and photo-chemistry of rhenium and rhodium complexes for carbon dioxide and proton reduction: a mini review, Nanomaterials and Energy 2 (2013) 134-147. https://doi.org/10.1680/nme.13.00004; c) Lim, R. J., Xie, M., Sk, M. A., Lee, J.-M., Fisher, A., Wang, X., Lim, K. H., A review on the electrochemical reduction of CO2 in fuel cells, metal electrodes and molecular catalysts, Catal. Today 233 (15) (2014) 169-180. https://doi.org/10.1016/j.cattod.2013.11.037.

a) Lin, S., Diercks, C. S., Zhang, Y.-B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science 349 (6253) (2015) 1208-1213. https://doi.org/10.1126/science.aac8343; b) Matlachowski, C., Braun, B., Tschierlei, S., Schwalbe, M., Photochemical CO2 Reduction Catalyzed by Phenanthroline Extended Tetramesityl Porphyrin Complexes Linked with a Rhenium(I) Tricarbonyl Unit, Inorg. Chem. 54 (21) (2015) 10351-10360. https://doi.org/10.1021/acs.inorgchem.5b01717; c) Hod, I., Sampson, M. D., Deria, P., Kubiak, C. P., Farha, O. K., Hupp, J. T., Fe-Porphyrin-Based Metal–Organic Framework Films as High-Surface Concentration, Heterogeneous Catalysts for Electrochemical Reduction of CO2, ACS Catal. 5 (11) (2015) 6302-6309. DOI: 10.1021/acscatal.5b01767; d) Costentin, C., Passard, G., Robert, M., Savéant, J.-M., Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion, Proc. Natl. Acad. Sci. 111 (42) (2014) 14990-14994. https://doi.org/10.1073/pnas.1416697111.

[51] Taheri, A., Thompson, E. J., Fettinger, J. C., Berben, L. A., An iron electrocatalyst for selective reduction of CO2 to formate in water: including thermochemical insights, ACS Catal. 5 (12) (2015) 7140-7151. https://doi.org/10.1021/acscatal.5b01708.

Ambre, R. B., Daniel, Q., Fan, T., Chen, H., Zhang, B., Wang, L., Ahlquist, M. S. G., Duan, L., Sun, L., Molecular engineering for efficient and selective iron porphyrin catalysts for electrochemical reduction of CO2 to CO, Chem. Commun. 52 (2016) 14478-14481. https://doi.org/10.1039/c6cc08099e.

Bhugun, I., Lexa, D., Savéant, J.-M., Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins: Synergystic effect of weak Brönsted acids, J. Am. Chem. Soc. 118 (7) (1996) 1769-1776. https://doi.org/10.1021/ja9534462.

Bhugun, I., Lexa, D., Savéant, J.-M., Ultraefficient selective homogeneous catalysis of the electrochemical reduction of carbon dioxide by an iron (0) porphyrin associated with a weak Broensted acid cocatalyst, J. Am. Chem. Soc. 116 (11) (1994) 5015-5016. https://doi.org/10.1021/ja00090a068.

Costentin, C., Drouet, S., Passard, G., Robert, M., Savéant, J.-M., Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2, J. Am. Chem. Soc. 135 (24) (2013) 9023-9031. https://doi.org/10.1021/ja4030148.

Rao, H., Schmidt, L. C., Bonin, J., Robert, M., Visible-light-driven methane formation from CO2 with a molecular iron catalyst, Nature 548 (2017) 74-77. https://doi.org/10.1038/nature23016.

Costentin, C., Robert, M., Savéant, J.-M., Tatin, A., Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water, Proc. Natl Acad. Sci. USA 112 (2015) 6882-6886. https://doi.org/10.1073/pnas.1507063112.

Azcarate, I., Costentin, C., Robert, M., Savéant, J.-M., Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical Conversion, J. Am. Chem. Soc. 138 (51) (2016) 16639-16644. https://doi.org/10.1021/jacs.6b07014.

Bonin, J., Maurin, A., Robert, M., Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances, Coord. Chem. Rev. 334 (2017) 184-198. https://doi.org/10.1016/j.ccr.2016.09.005.

Davies, S. G., Hibberd, J., Simpson, S. J., Disproportionation of the iron carbonyl hydride (η5-C5H5)Fe(CO)H(Ph2PCH2CH2PPh2) to the iron methyl (η5-C5H5)FePh2PCH2CH2PPh2)Me., J. Chem. Soc. Chem. Commun. (24) (1982) 1404-1405. https://doi.org/10.1039/C39820001404.

Appel, A. M., Bercaw, J. E., Bocarsly, A. B., Dobbek, H., DuBois, D. L., Dupuis, M., Ferry, J. G., Fujita, E., Hille, R., Kenis, P. J. A., Kerfeld, C. A., Morris, R. H., Peden, C. H. F., Portis, A. R., Ragsdale, S. W., Rauchfuss, T. B., Reek, J. N. H., Seefeldt, L. C., Thauer, R. K., Waldrop, G. L., Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation, Chem. Rev. 113 (8) (2013) 6621-6658. https://doi.org/10.1021/cr300463y.

Pan, F., Zhang, H., Liu, K., Cullen, D., More, K., Wang, M., Feng, Z., Wang, G., Wu, G., Li, Y., Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts, ACS Catal. 8 (4) (2018) 3116-3122. https://doi.org/10.1021/acscatal.8b00398.

Nichols, E. M., Derrick, J. S., Nistanaki, S. K., Smith, P. T., Chang, C. J., Positional effects of second-sphere amide pendants on electrochemical CO2 reduction catalyzed by iron porphyrins, Chem. Sci. 9 (11) (2018) 2952-2960. https://doi.org/10.1039/c7sc04682k.

Costentin, C., Drouet, S., Robert, M., Savéant, J.-M., Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions. Cyclic voltammetry and preparative-scale electrolysis, J. Am. Chem. Soc. 134 (27) (2012) 11235-11242. https://doi.org/10.1021/ja303560c.

Azcarate, I., Costentin, C., Robert, M., Savéant, J.-M., Dissection of Electronic Substituent Effects in Multielectron–Multistep Molecular Catalysis. Electrochemical CO2-to-CO Conversion Catalyzed by Iron Porphyrins, J. Phys. Chem. C 120 (51) (2016) 28951-28960. https://doi.org/10.1021/acs.jpcc.6b09947.

Pegis, M. L., McKeown, B. A., Kumar, N., Lang, K., Wasylenko, D. J., Zhang, X. P., Raugei, S., Mayer, J. M., Homogenous Electrocatalytic Oxygen Reduction Rates Correlate with Reaction Overpotential in Acidic Organic Solutions, ACS Cent. Sci. 2 (11) (2016) 850-856. https://doi.org/10.1021/acscentsci.6b00261.

Azcarate, I., Costentin, C., Robert, M., Savéant, J.-M., Through-Space Charge Interaction Substituent Effects in Molecular Catalysis Leading to the Design of the Most Efficient Catalyst of CO2-to-CO Electrochemical, J. Am. Chem. Soc. 138 (51) (2016) 16639-16644. https://doi.org/10.1021/jacs.6b07014.

Specklin, D., Fliedel, C., Gourlaouen, C., Bruyere, J.-C., Avilés, T., Boudon, C., Ruhlmann, L., Dagorne, S., N‐Heterocyclic Carbene Based Tri‐organyl‐Zn–Alkyl Cations: Synthesis, Structures, and Use in CO2 Functionalization, Chem. Eur. J. 23 (23) 5509-5519. https://doi.org/10.1002/chem.201605907.

Sattler, W., Parkin, G., Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization, J. Am. Chem. Soc. 134 (42) (2012) 17462-17465. https://doi.org/10.1021/ja308500s.

Specklin, D., Hild, F., Fliedel, C., Gourlaouen, C., Veiros, L. F., Dagorne, S., Accessing Two‐Coordinate ZnII Organocations by NHC Coordination: Synthesis, Structure, and Use as π‐Lewis Acids in Alkene, Alkyne, and CO2 Hydrosilylation, Chem. Eur. J 23 (63) (2017) 15908-15912. https://doi.org/10.1002/chem.201704382.

Rauch, M., Parkin, G., Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide, J. Am. Chem. Soc. 139 (50) (2017) 18162-18165. https://doi.org/10.1021/jacs.7b10776.

Rit, A., Zanardi, A., Spaniol, T. P., Maron, L., Okuda, J., A Cationic Zinc Hydride Cluster Stabilized by an N‐Heterocyclic Carbene: Synthesis, Reactivity, and Hydrosilylation Catalysis, Angew. Chem. Int. Ed. 53 (48) (2014) 13273-13277. https://doi.org/10.1002/anie.201408346.

Donovan, E. S., Barry, B. M., Larsen, C. A., Wirtz, M. N., Geiger, W. E., Kemp, R. A., Facilitated carbon dioxide reduction using a Zn(II) complex, Chem. Commun. 52 (8) (2016) 1685-1688. https://doi.org/10.1039/C5CC07318A.

Hammouche, M., Lexa, D., Momenteau, M., Savéant, J.-M., Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron("0") porphyrins. Role of the addition of magnesium cations, J. Am. Chem. Soc. 113 (22) (1991) 8455-8466. https://doi.org/10.1021/ja00022a038.

Wu, Y., Jiang, J., Weng, Z., Wang, M., Broere, D. L. J., Zhong, Y, Brudvig, G. W., Feng, Z., Wang, H., Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center, ACS Central Science 3 (8) (2017) 847-852. https://doi.org/10.1021/acscentsci.7b00160.

Won, D. H., Shin, H., Koh, J., Chung, J., Lee, H. S., Kim, H., Woo, S. I., Highly Efficient, Selective, and Stable CO2 Electroreduction on a Hexagonal Zn Catalyst, Angew. Chem., Int. Ed. 55 (32) (2016) 9297-9300. https://doi.org/10.1002/anie.201602888.

Hori, Y., Kikuchi, K., Suzuki, S., Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution, Chem. Lett. 14 (11) (1985) 1695-1698. https://doi.org/10.1246/cl.1985.1695.

Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media, Electrochim. Acta 39 (11-12) (1994) 1833-1839. https://doi.org/10.1016/0013-4686(94)85172-7.

Wei, C., Feng, Z., Baisariyev, M., Yu, L., Zeng, L., Wu, T., Zhao, H., Huang, Y., Bedzyk, M. J., Sritharan, T., Xu, Z., Multifunctional mixed valence N-doped CNT@MFe2O4 hybrid nanomaterials: from engineered one-pot coprecipitation to application in energy storage paper supercapacitors, J. Chem. Mater. 28 (12) (2016) 4129-4133. https://doi.org/10.1039/C8NR03533D.

Lin, S., Diercks, C. S., Zhang, Y.-B., Kornienko, N., Nichols, E. M., Zhao, Y., Paris, A. R., Kim, D., Yang, P., Yaghi, O. M., Chang, C. J., Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water, Science 349 (6253) (2015) 1208-1213. https://doi.org/10.1126/science.aac8343.

Closs, G. L., Closs, L. E., Negative ions of porphin metal complexes, J. Am. Chem. Soc. 85 (6) (1963) 818-819. https://doi.org/10.1021/ja00889a038.

Balducci, G., Chottard, G., Gueutin, C., Lexa, D., Savéant, J.-M., Electrochemistry of iron(I) porphyrins in the presence of carbon monoxide. Comparison with zinc porphyrins, Inorg. Chem. 33 (9) (1994) 1972-1978. https://doi.org/10.1021/ic00087a038.

Lanese, J. G., Wilson, G. S J., Electrochemical studies of zinc tetraphenylporphin, Electrochem. Soc. 119 (8) (1972) 1039-1043. https://doi.org/10.1149/1.2404391.

Lin, C.-L., Fang, M.-Y., Cheng, S.-H J., Substituent and axial ligand effects on the electrochemistry of zinc porphyrins, Electroanal. Chem. 531 (2) (2002) 155-162. https://doi.org/10.1016/S0022-0728(02)01056-2.

Connelly, N. G., Geiger, W. E., Chemical redox agents for organometallic chemistry, Chem. Rev. 96 (2) (1996) 877-910. https://doi.org/10.1021/cr940053x.

Parkhots, O. P., Ivashin, N. V., Study of the structure and spectral properties of radical anions of Zn complexes of porphyrins by the method of density functional theory, Opt. Spectrosc. 106 (2) (2009) 204-212 https://doi.org/10.1134/S0030400X0902009X.

Wang, Y., Hou, P., Wang, Z., Kang, P., Zinc Imidazolate Metal–Organic Frameworks (ZIF‐8) for Electrochemical Reduction of CO2 to CO, ChemPhysChem. 18 (2017) 3142-3147. https://doi.org/10.1002/cphc.201700716.

Kemmitt, R. D. W., Peacock, R. D., The Chemistry of Manganese, Technetium and Rhenium, Pergamon Press, 1973.

Valyaev, D. A., Lavigne, G., Lugan, N., Manganese organometallic compounds in homogeneous catalysis: past, present, and prospects, Coord. Chem. Rev. 308 (2016) 191-235. https://doi.org/10.1016/j.ccr.2015.06.015.

Sinopoli, A., La Porte, N. T., Martinez, J. F., Wasielewski, M. R., Sohail, M., Manganese carbonyl complexes for CO2 reduction, Coord. Chem. Rev. 365 (2018) 60-74. https://doi.org/10.1016/j.ccr.2018.03.011.

Grice, K. A., Kubiak, C. P., Chapter five – recent studies of rhenium and manganese bipyridine carbonyl catalysts for the electrochemical reduction of CO2, Advances in Inorg. Chem. 66 (2014) 163-188. https://doi.org/10.1016/B978-0-12-420221-4.00005-6.

Feng, D.-M., Zhu, Y.-P., Chen, P., Ma, T.-Y., Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems, Catalysts 7 (12) (2017) 373. https://doi.org/10.3390/catal7120373.

Grice, K. A., Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO2 catalysis, Coord. Chem. Rev. 336 (2017) 78-95. https://doi.org/10.1016/j.ccr.2017.01.007.

Yamazaki, Y., Takeda, H., Ishitani, O., Photocatalytic reduction of CO2 using metal complexes C, J. Photochem. Photobiol. 25 (2015) 106-137. https://doi.org/10.1016/j.jphotochemrev.2015.09.001.

Stanbury, M., Compain, J.-D., Chardon-Noblat, S., Electro and photoreduction of CO2 driven by manganese-carbonyl molecular catalysts, Coord. Chem. Rev. 361 (2018): 120-137. https://doi.org/10.1016/j.ccr.2018.01.014.

Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P., Cohen, S. M., Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal–Organic Framework, Inorg. Chem. 54 (14) (2015) 6821-6828. https://doi.org/10.1021/acs.inorgchem.5b00752.

Wang, B., Huang, H., Lv, X.-L., Xie, Y., Li, M.; Li, J.-R., Tuning CO2 Selective Adsorption over N2 and CH4 in UiO-67 Analogues through Ligand Functionalization, Inorg. Chem. 53 (17) (2014) 9254-9259. https://doi.org/10.1021/ic5013473.

Ko, N., Hong, J., Sung, S., Cordova, K. E., Park, H. J., Yang, J. K., Kim, A significant enhancement of water vapour uptake at low pressure by amine-functionalization of UiO-67, J. Dalton Trans. 44 (5) (2015) 2047-2051. https://doi.org/10.1039/C4DT02582B.

Katz, M. J., Brown, Z. J., Colon, Y. J., Siu, P. W., Scheidt, K. A., Snurr, R. Q., Hupp, J. T., Farha, O. K., A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun. 49 (82) (2013) 9449-9451. https://doi.org/10.1039/c3cc46105j.

Georgopoulos, M., Hoffman, M. Z. J., Cage escape yields in the quenching of tris (2,2'-bipyridine) ruthenium (II) by methylviologen: presence of triethanolamine as a sacrificial electron donor, Phys. Chem. 95 (20) (1991) 7717-7721. https://doi.org/10.1021/j100173a031.

Morimoto, T., Nakajima, T., Sawa, S., Nakanishi, R., Imori, D., Ishitani, O., CO2 Capture by a Rhenium(I) Complex with the Aid of Triethanolamine, J. Am. Chem. Soc. 135 (45) (2013) 16825-16828. https://doi.org/10.1021/ja409271s.

Hawecker, J., Lehn, J.-M., Ziessel, R., Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts, Chem. Soc., Chem. Commun. 0 (9) (1983) 536-538. https://doi.org/10.1039/C39830000536.

Hori, H., Takano, Y., Koike, K., Sasaki, Y., Efficient rhenium-catalyzed photochemical carbon dioxide reduction under high pressure, Inorg. Chem. Commun. 6 (3) (2003) 300-303. https://doi.org/10.1016/S1387-7003(02)00758-X.

Shinozaki, K., Hayashi, Y., Brunschwig, B., Fujita, E., Characterization of transient species and products in photochemical reactions of Re(dmb) (CO)3 Et with and without CO2, Res. Chem. Intermed. 33 (1-2) (2007) 27-36. https://doi.org/10.1163/156856707779160807.

Fujita, E., Hayashi, Y., Kita, S., Brunschwig, B. S., In Studies in Surface Science and Catalysis; Sang-Eon Park, J.-S. C., Kyu-Wan, L., Eds.; Elsevier: New York, 2004; Vol. 153, p 271.

Agarwal, J., Johnson, R. P., Li, G., A Reduction of CO2 on a Tricarbonyl Rhenium(I) Complex: Modeling a Catalytic Cycle, J. Phys. Chem. 115 (13) (2011) 2877-2881. https://doi.org/10.1021/jp111342r.

Hayashi, Y., Kita, S., Brunschwig, B. S., Fujita, E., Involvement of a Binuclear Species with the Re−C(O)O−Re Moiety in CO2Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands: Strikingly Slow Formation of the Re−Re and Re−C(O)O−Re Species from Re(dmb)(CO)3S (dmb = 4,4'-Dimethyl-2,2'-bipyridine, S = Solvent), J. Am. Chem. Soc. 125 (39) (2003) 11976-11987. https://doi.org/10.1021/ja035960a.

Franco, F., Pinto, M. F., Royo, B., Lloret-Fillol, J., A Highly Active N-Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO2 Reduction to CO, Angew. Chem. Int. Ed. 57 (17) (2018). https://doi.org/10.1002/anie.201800705.

Bourrez, M., Molton, F., Chardon-Noblat, S., Deronzier, A., [Mn(bipyridyl)(CO)3Br]: An Abundant Metal Carbonyl Complex as Efficient Electrocatalyst for CO2 Reduction, Angew. Chem. Int. Ed. 123 (2011) 10077-10080. https://doi.org/10.1002/anie.201103616.

Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D., Kubiak, C. P., Manganese as a substitute for rhenium in CO2 reduction catalysts: the importance of acids, Inorg. Chem. 52 (5) (2013) 2484-2491. https://doi.org/10.1021/ic302391u.

Sampson, M. D., Nguyen, A. D., Grice, K. A., Moore, C. E., Rheingold, A. L., Kubiak, C. P., Manganese catalysts with bulky bipyridine ligands for the electrocatalytic reduction of carbon dioxide: Eliminating dimerization and altering catalysis, J. Am. Chem. Soc. 136 (14) (2014) 5460-5471. https://doi.org/10.1021/jacs.5b01552.

Franco, F., Cometto, C., Nencini, L., Barolo, C., Sordello, F., Minero, C., Fiedler, J., Robert, M., Gobetto, R., Nervi, C., Local Proton Source in Electrocatalytic CO2 Reduction with [Mn(bpy–R)(CO)3Br] Complexes, Chem. Eur. J. 23 (20) (2017) 4782. https://doi.org/10.1002/chem.201605546.

Ngo, K. T., McKinnon, M., Mahanti, B., Narayanan, R., Grills, D. C., Ertem, M. Z., J. Rochford J., Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes, J. Am. Chem. Soc. 139 (7) (2017) 2604-2618. https://doi.org/10.1021/jacs.6b08776.

Sampson, M. D., Kubiak, C. P., Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials, J. Am. Chem. Soc. 138 (4) (2016) 1386-1393. https://doi.org/10.1021/jacs.5b12215.

Reuillard, B., Ly, K. H., Rosser, T. E., Kuehnel, M. F., Zebger, I., Reisner, E., Tuning Product Selectivity for Aqueous CO2 Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode, J. Am. Chem. Soc. 139 (41) (2017) 14425-14435. https://doi.org/10.1021/jacs.7b06269.

Franco, F., Cometto, C., Vallana, F. F., Sordello, F., Priola, E., Minero, C., Nervi, C., Gobetto, R., A local proton source in a [Mn (bpy-R)(CO)3Br]-type redox catalyst enables CO2 reduction even in the absence of Brønsted acids, Chem. Commun. 50 (93) (2014) 14670-14673. https://doi.org/10.1039/c4cc05563b.

Smieja, J. M., Sampson, M. D., Grice, K. A., Benson, E. E., Froehlich, J. D., Kubiak, C. P., Manganese as a Substitute for Rhenium in CO2 Reduction Catalysts: The Importance of Acids, Inorg. Chem. 52 (5) (2013) 2484-2491. https://doi.org/10.1021/ic302391u.

Fei, H., Sampson, M. D., Lee, Y., Kubiak, C. P., Cohen, S. M., Photocatalytic CO2 Reduction to Formate Using a Mn(I) Molecular Catalyst in a Robust Metal-Organic Framework, Inorg. Chem. 54 (14) (2015) 6821-6828. https://doi.org/10.1021/acs.inorgchem.5b00752.

Agarwal, J., Shaw, T. W., Schaefer, H. F., Bocarsly, A. B., Design of a Catalytic Active Site for Electrochemical CO2 Reduction with Mn(I)-Tricarbonyl Species, Inorg. Chem. 54 (11) (2015) 5285-5294. https://doi.org/10.1021/acs.inorgchem.5b00233.

Takeda, H., Koizumi, H., Okamoto, K., Ishitani, O., Photocatalytic CO2 reduction using a Mn complex as a catalyst, Chem. Commun. 50 (12) (2014) 1491-1493. https://doi.org/10.1039/c3cc48122k.

Ngo, K. T., McKinnon, M., Mahanti, B., Narayanan, R., Grills, D. C., Ertem, M. Z., Rochford, Turning on the Protonation-First Pathway for Electrocatalytic CO2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes, J. J. Am. Chem. Soc. 139 (7) (2017) 2604-2618. https://doi.org/10.1021/jacs.6b08776.

Franco, F., Cometto, C., Nencini, L., Barolo, C., Sordello, F., Minero, C., Fiedler, J., Robert, M., Gobetto, R., Nervi, C., Local Proton Source in Electrocatalytic CO2 Reduction with [Mn(bpy–R)(CO)3Br] Complexes, Chem. - Eur. J. 23 (20) (2017) 4782-4793. https://doi.org/10.1002/chem.201605546.

Walsh, J. J., Smith, C. L., Neri, G., Whitehead, G. F. S., Robertson, C. M., Cowan, A. J., Improving the efficiency of electrochemical CO2 reduction using immobilized manganese complexes, Faraday Discuss. 183 (2015) 147-160. https://doi.org/10.1039/c5fd00071h.

Torralba-Peñalver, E.; Luo, Y.; Compain, J.-D.; Chardon-Noblat, S.; Fabre, B., Selective Catalytic Electroreduction of CO2 at Silicon Nanowires (SiNWs) Photocathodes Using Non-Noble Metal-Based Manganese Carbonyl Bipyridyl Molecular Catalysts in Solution and Grafted onto SiNWs, ACS Catal. 5 (10) (2015) 6138-6147. https://doi.org/10.1021/acscatal.5b01546.

Rosser, T. E., Windle, C. D., Reisner, E., Electrocatalytic and Solar‐Driven CO2 Reduction to CO with a Molecular Manganese Catalyst Immobilized on Mesoporous TiO2, Angew. Chem., Int. Ed. 55 (26) (2016) 7388. https://doi.org/10.1002/anie.201601038.

Bourrez, M., Orio, M., Molton, F., Vezin, H., Duboc, C., Deronzier, A., Chardon-Noblat, S., Pulsed‐EPR Evidence of a Manganese (II) Hydroxycarbonyl Intermediate in the Electrocatalytic Reduction of Carbon Dioxide by a Manganese Bipyridyl Derivative, Angew. Chem., Int. Ed. 53 (1) (2014) 240-243. https://doi.org/10.1002/anie.201306750.

Keim, W., Nickel: an element with wide application in industrial homogeneous catalysis, Angew. Chem. Int. Ed. Engl. 29 (3) (1990) 235-244. https://doi.org/10.1002/anie.199002351.

Rosen, B. M., Quasdorf, K. W., Wilson, D. A., Zhang, N., Resmerita, A.-M., Garg, N. K., Percec, V., Nickel-catalyzed cross-couplings involving carbon-oxygen bonds, Chem. Rev. 111 (3) (2011) 1346-1416. https://doi.org/10.1021/cr100259t.

Wiese, S., Kilgore, U. J., DuBois, D. L., Bullock, R. M., [Ni(PMe2NPh2)2](BF4)2 as an Electrocatalyst for H2 Production, ACS Catal. 2 (5) (2012) 720-727. https://doi.org/10.1021/cs300019h.

Gan, L., Groy, T. L., Tarakeshwar, P., Mazinani, S. K., Shearer, J., Mujica, V., Jones, A. K., A nickel phosphine complex as a fast and efficient hydrogen production catalyst, J. Am. Chem. Soc. 137 (3) (2015) 1109-1115. https://doi.org/10.1021/ja509779q.

Thoi, V. S., Kornienko, N., Margarit, C. G., Yang, P., Chang, C. J., Visible-Light Photoredox Catalysis: Selective Reduction of Carbon Dioxide to Carbon Monoxide by a Nickel N-Heterocyclic Carbene–Isoquinoline Complex, J. Am. Chem. Soc. 135 (38) (2013) 14413-14424. https://doi.org/10.1021/ja4074003.

Han, Y., Wu, Y., Lai, W., Cao, R., Electrocatalytic water oxidation by a water-soluble nickel porphyrin complex at neutral pH with low overpotential, Inorg. Chem. 54 (11) (2015) 5604-5613. https://doi.org/10.1021/acs.inorgchem.5b00924.

Zhang, M., Zhang, M. T., Hou, C., Ke, Z. F., Lu, T. B., Homogeneous electrocatalytic water oxidation at neutral pH by a robust macrocyclic nickel (II) complex, Angew. Chem. Int. Ed. 53 (48) (2014) 13042-13048. https://doi.org/10.1002/anie.201406983.

Solis, B. H., Maher, A. G., Dogutan, D. K., Nocera, D. G., Hammes-Schiffer, S., Nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism, Proc. Natl. Acad. Sci. U.S.A. 113 (3) (2016) 485-492. https://doi.org/10.1073/pnas.1521834112.

Zilbermann, I., Maimon, E., Cohen, H., Meyerstein, D., Redox chemistry of nickel complexes in aqueous solutions, Chem. Rev. 105 (6) (2005) 2609-2626. https://doi.org/10.1021/cr030717f.

Tasker, S. Z., Standley, E. A., Jamison, T. F., Recent advances in homogeneous nickel catalysis, Nature 509 (2014) 299-309. https://doi.org/10.1038/nature13274.

Beley, M., Collin, J. P., Ruppert, R., Sauvage, J. P., Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process, J. Am. Chem. Soc. 108 (4) (1986) 7461-7467. https://doi.org/10.1021/ja00284a003.

Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R., DuBois, D. L., A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s− 1 for H2 production, Science 333 (2011) 863-866. https://doi.org/10.1126/science.1205864.

Shafaat, H. S., Rudiger, O., Ogata, H., Lubitz, W., [NiFe] hydrogenases: a common active site for hydrogen metabolism under diverse conditions, Biochim. Biophys. Acta 1827 (8-9) (2013) 986-1002. https://doi.org/10.1016/j.bbabio.2013.01.015.

Greene, B. L., Wu, C. H., Vansuch, G. E., Adams, M. W., Dyer, R. B., Proton Inventory and Dynamics in the Nia-S to Nia-C Transition of a [NiFe] Hydrogenase, Biochemistry 55 (12) (2016) 1813-1825. https://doi.org/10.1021/acs.biochem.5b01348.

Jeoung, J. H., Dobbek, H., Carbon dioxide activation at the Ni, Fe-cluster of anaerobic carbon monoxide dehydrogenase, Science 318 (2007) 1461-1464. https://doi.org/10.1126/science.1148481.

Fesseler, J., Jeoung, J.-H., Dobbek, H., How the [NiFe4S4] Cluster of CO Dehydrogenase Activates CO2 and NCO−, Angew. Chem. Int. Ed. 54 (29) (2015) 8560-8564. https://doi.org/10.1002/anie.201501778.

Dempsey, J. L., Brunschwig. B. S., Winkler, J. R., Gray, H. B., Hydrogen evolution catalyzed by cobaloximes, Acc. Chem. Res. 42 (12) (2009) 1995-2004. https://doi.org/10.1021/ar900253e.

Wang, M., Na, Y., Gorlov, M., Sun, L., Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems, Dalton Trans. (2009) 6458-6467. https://doi.org/10.1039/b903809d.

Mondal, B., Dey, A., Development of air-stable hydrogen evolution catalysts, Chem. Commun. 53 (55) (2017) 7707-7715. https://doi.org/10.1039/c7cc02941a.

Zee, D. Z., Chantarojsiri, T., Long, J. R., Chang, C. J., Metal-polypyridyl catalysts for electro-and photochemical reduction of water to hydrogen, Acc. Chem. Res. 48 (7) (2015) 2027-2036. https://doi.org/10.1021/acs.accounts.5b00082.

Wang, M., Chen, L., Sun, L., Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy Environ. Sci. 5 (5) (2012) 6763-6778. https://doi.org/10.1039/C2EE03309G.

Thoi, V. S., Sun, Y., Long, J. R., Chang, C. J., Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions, Chem. Soc. Rev. 42 (6) (2013) 2388-2400. https://doi.org/10.1039/c2cs35272a.

Coutard, N., Kaeffer, N., Artero, V., Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation, Chem. Commun. 52 (95) (2016) 13728-13748. https://doi.org/10.1039/c6cc06311j.

Willkomm, J., Orchard, K. L., Reynal, A., Pastor, E., Durrant, J. R., Reisner, E., Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production, Chem. Soc. Rev. 45 (1) (2016) 9-23. https://doi.org/10.1039/c5cs00733j.

DuBois, D. L., Bullock, R. M., Molecular electrocatalysts for the oxidation of hydrogen and the production of hydrogen – the role of pendant amines as proton relays, Eur. J. Inorg. Chem. 2011 (7) (2011) 1017-1027. https://doi.org/10.1002/ejic.201001081.

Kärkäs, M. D., Verho, O., Johnston, E. V., Åkermark, B., Artificial photosynthesis: molecular systems for catalytic water oxidation, Chem. Rev. 114 (24) (2014) 11863-12001. https://doi.org/10.1021/cr400572f.

Kondo, M., Masaoka, S., Water oxidation catalysts constructed by biorelevant first-row metal complexes, Chem. Lett. 45 (11) (2016) 1220-1231. https://doi.org/10.1246/cl.160639.

Garrido-Barros, P., Gimbert-Surinach, C., Matheu, R., Sala, X., Llobet, A., How to make an efficient and robust molecular catalyst for water oxidation, Chem. Soc. Rev. 46 (20) (2017) 6088-6098. https://doi.org/10.1039/c7cs00248c.

Costentin, C., Robert, M., Savéant, J.-M., Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion, Acc. Chem. Res. 48 (12) (2015) 2996-3006. https://doi.org/10.1021/acs.accounts.5b00262.

Benson, E. E., Kubiak, C. P., Sathrum, A. J., Smieja, J. M., Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels, Chem. Soc. Rev. 38 (1) (2009) 89-99. https://doi.org/10.1039/b804323j.

Yamazaki, Y., Takeda, H., Ishitani, O., Photocatalytic reduction of CO2 using metal complexes C, J. Photochem. Photobiol. 25 (2015) 106-137. https://doi.org/10.1016/j.jphotochemrev.2015.09.001.

Morris, A. J., Meyer, G. J., Fujita, E., Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels, Acc. Chem. Res. 42 (12) (2009) 1983-1994. https://doi.org/10.1021/ar9001679.

Reithmeier, R., Bruckmeier, C., Rieger, B., Conversion of CO2 via visible light promoted homogeneous redox catalysis, Catalysts 2 (4) (2012) 544-571. https://doi.org/10.3390/catal2040544.

Kang, P., Chen, Z., Brookhart, M., Meyer, T. J., Electrocatalytic reduction of carbon dioxide: Let the molecules do the work, Top. Catal. 58 (1) (2014) 30-45. https://doi.org/10.1007/s11244-014-0344-y.

Windle, C. D., Perutz, R. N., Advances in molecular photocatalytic and electrocatalytic CO2 reduction, Coord. Chem. Rev. 256 (2012) 2562-2570. https://doi.org/10.1016/j.ccr.2012.03.010.

Costentin, C., Robert, M., Savéant, J.-M., Catalysis of the electrochemical reduction of carbon dioxide, Chem. Soc. Rev. 42 (6) (2013) 2423-2436. https://doi.org/10.1039/c2cs35360a.

Wang, J.-W., Zhong, D.-C., Lu, T.-B., Artificial photosynthesis: Catalytic water oxidation and CO2 reduction by dinuclear non-noble-metal molecular catalysts, Coord. Chem. Rev. 377 (2017) 225-236. https://doi.org/10.1016/j.ccr.2018.09.003.

Niu, K., Xu, Y., Wang, H., Ye, R., Xin, H. L., Lin, F., Tian, C., Lum, Y., Bustillo, K. C., Doeff, M. M., Koper, M. T. M., Ager, J., Xu, R., Zheng, H., A spongy nickel-organic CO2 reduction photocatalyst for nearly 100% selective CO production, Sci. Adv. 3 (7) (2017) 1-9. https://doi.org/10.1126/sciadv.1700921.

Gao, C., Meng, Q., Zhao, K., Yin, H., Wang, D., Guo, J., Zhao, S., Chang, L., He, M., Li, Q., Zhao, H., Huang, X., Gao, Y., Tang, Z., Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible‐Light Photocatalytic Reduction of CO2, Adv. Mater. 28 (30) (2016) 6485-6490. https://doi.org/10.1002/adma.201601387.

Kirch, M., Lehn, J.-M., Sauvage, J.-P., Hydrogen generation by visible light irradiation of aqueous solutions of metal complexes. An approach to the photochemical conversion and storage of solar energy, Helv. Chim. Acta 62 (4) (1979) 1345-1384. https://doi.org/10.1002/hlca.19790620449.

Gärtner, F., Sundararaju, B., Surkus, A.-E., Boddien, A., Loges, B., Junge, H., Dixneuf, P. H., Beller, M., Light‐Driven Hydrogen Generation: Efficient Iron‐Based Water Reduction Catalysts, Angew. Chem. Int. Ed. 48 (52) (2009) 9962-9965. https://doi.org/10.1002/anie.200905115.

Maschmeyer, T., Che, M., Catalytic Aspects of Light‐Induced Hydrogen Generation in Water with TiO2 and Other Photocatalysts: A Simple and Practical Way Towards a Normalization?, Angew. Chem. Int. Ed. 49 (9) (2010) 1536-1539. https://doi.org/10.1002/anie.200903921.

Cheng, T., Xiao, H., Goddard III, W. A., Full atomistic reaction mechanism with kinetics for CO reduction on Cu (100) from ab initio molecular dynamics free-energy calculations at 298 K, Proc. Natl. Acad. Sci. U.S.A. 114 (8) (2017) 1795-1800. https://doi.org/10.1073/pnas.1612106114.

Li, C. W., Ciston, J., Kanan, M. W., Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper, Nature 508 (2014) 504-507. https://doi.org/10.1038/nature13249.

London, R. E., Walker, T. E., Kollman, V. H., Matwiyoff, N. A., Studies of the pH dependence of carbon-13 shifts and carbon-carbon coupling constants of [U-13C] aspartic and-glutamic acids, J. Am. Chem. Soc. 100 (12) (1978) 3723-3729. https://doi.org/10.1021/ja00480a012.

Kuehnel, M. F., Orchard, K. L., Dalle, K. E., Reisner, E., Selective Photocatalytic CO2 Reduction in Water through Anchoring of a Molecular Ni Catalyst on CdS Nanocrystals, J. Am. Chem. Soc. 139 (21) (2017) 7217-7223. https://doi.org/10.1021/jacs.7b00369.