Electrochemical remediation of industrial pharmaceutical wastewater containing hormones in a pilot scale treatment system
Main Article Content
Abstract
The elimination of residual drugs from pharmaceutical and domestic sources is a growing concern, as they are able to reach water and soil resources and can present environmental and health risks even in very low concentrations. Traditional water and wastewater treatment systems have not been efficient in the removal of these compounds, evidencing the importance of the development of new remediation methods. In view of the applicability and versatility of electrocoagulation techniques in the removal of pollutants, the aim of this work is to evaluate the parameters: biochemical oxygen demand (BOD), chemical oxygen demand (COD), color, turbidity, algestone acetophenide (AAc) and estradiol enanthate (EEn) using a pilot treatment system, as well as phytotoxicity and Brine shrimp toxicity. The study showed good removal efficiency, comprising remarkable remediation performance assayed through BOD (61.5%), COD (58.6%), color (83.1%), turbidity (96.7%), AAc (77.0%) and EEn (56.7%) after 30 minutes. For toxicity, raw effluent was considered more phytotoxic for lettuce and cucumber seeds when compared to treated effluent. The results suggest that the pilot prototype was promising, providing an increase in both the germination potential and the root growth of the seeds (Lactuca sativa and Cucumis sativus) and a significant decrease in the acute toxicity to Artemia salina.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
References
Pereira, L. C., de Souza, A. O., Bernardes, M. F. F., A perspective on the potential risks of emerging contaminants to human and environmental health, Environ Sci Pollut Re Int 22 (2015) 13800-13823. https://doi.org/10.1007/s11356-015-4896-6
Archer, E., Petrie, B., Kasprzyk-Hordern, B., Wolfaardt, G. M., The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters, Chemosphere 174 (2017) 437-446. https://doi.org/10.1016/j.chemosphere.2017.01.101
Hilton, M. J., Thomas, K. V., Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography–electrospray tandem mass spectrometry. J Chromatography A 1015 (2003)129–141. https://doi.org/10.1016/S0021-9673(03)01213-5
Hari, A. C., Paruchuri, R. A., Sabatini, D. A., Kibbey, T. C. G., Effects of pH and Cationic and Nonionic Surfactants on the Adsorption of Pharmaceuticals to a Natural Aquifer Material, Environ Sci Technol 39 (2005) 2592-2598. https://doi.org/10.1021/es048992m
Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment., J.Hazard. Mater 175 (2010) 45-95. https://doi.org/10.1016/j.jhazmat.2009.10.100
Xu, J., Xu, Y., Wang, H. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river, Chemosphere 119 (2015) 1379–1385. https://doi.org/10.1016/j.chemosphere.2014.02.040
Liu, J-L., Wong, M-H., Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environment International, 59 (2013)208-22. http://dx.doi.org/10.1016/j.envint.2013.06.012
Yang, Y-Y., Liu, W-R., Liu, Y-S., Suitability of pharmaceuticals and personal care products (PPCPs) and artificial sweeteners (ASs) as wastewater indicators in the Pearl River Delta, South China, Sci Total Environ 590–591 (2017) 611-619. https://doi.org/10.1016/j.scitotenv.2017.03.001
Joseph, E., The dictionary of drugs: chemical data, structures and bibliographies, Springer, 2014.
Liu, Z.-H., Kanjo, Y., Mizutani, S., Urinary excretion rates of natural estrogens and androgens from humans, and their occurrence and fate in the environment: a review, Sci. Total Environ. 407 (2009) 4975–4985. https://doi.org/10.1016/j.scitotenv.2009.06.001
Kanakaraju, D., Glass, B. D., Oelgemöller, M ., Advanced oxidation process-mediated removal of pharmaceuticals from water: A review, J Environ Manage 219 (2018) 189-207. https://doi.org/10.1016/j.jenvman.2018.04.103
Aquino, S. F., Brandt, E. M. F., Chernicharo, C. A. L., Removal of drugs and endocrine disrupters in sewage treatment plants: literature review, Eng Sanit Ambient 18 (2013)187-204. https://doi.org/10.1590/S1413-41522013000300002
Mirzaei, R., Yunesian, M., Nasseri, S., Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran, Sci. Total. Environ. 619-620 (2018) 446-459. https://doi.org/10.1016/j.scitotenv.2017.07.272
Xiang, J., Wu, M., Lei, J., Fu, C., Gu, J., Xu, G., The fate and risk assessment of psychiatric pharmaceuticals from psychiatric hospital effluent, Ecotox. Environ. Safe. 150 (2019) 289-296. https://doi.org/10.1016/j.ecoenv.2017.12.049
Xuan, R., Blassengale, A. A., Wang, Q., Degradation of estrogenic hormones in silt loam soil, J. Agric. Food Chem. 56 (2008) 9152–9158. https://doi.org/10.1021/jf8016942
Tijani, J. O., Fatoba, O. O., Madzivire, G., Petrik, L. F., A review of combined advanced oxidation technologies for the removal of organic pollutants from water, Water Air Soil Pollut. 225 (2014) 2102. https://doi.org/10.1007/s11270-014-2012-y
Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., Silva, A. M. T., An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU, Environ. Int. 75 (2015) 33–51. https://doi.org/10.1016/j.envint.2014.10.027
Arvanitoyannis, I. S., Kassaveti, A., Stefanatos, S., Olive oil waste treatment: a comparative and critical presentation of methods, advantages & disadvantages, Crit. Rev. Food Sci. Nutr. 47(3) (2007)187–229. https://doi.org/10.1080/10408390600695300
Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., Hübner, U., Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review, Water Research 139 (2018) 118-131. https://doi.org/10.1016/j.watres.2018.03.042
Moreira, F. C., Boaventura, R. A. R., Brillas, E., Vilar, V. J. P., Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters, Applied Catalysis B: Environmental 202 (2017) 217–261. https://doi.org/10.1016/j.apcatb.2016.08.037
Klavarioti, M., Mantzavinos, D., Kassinos, D., Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes, Environment International 35 (2009) 402–417. https://doi.org/10.1016/j.envint.2008.07.009
Sirés, I., Brillas, E., Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review, Environ Int 40 (2012) 212-229. https://doi.org/10.1016/j.envint.2011.07.012
Cañizares, P., Jiménez, C., Martínez, F., Saez, C., Rodrigo, M. A., Study of the electrocoagulation process using aluminum and iron electrodes, Ind Eng Chem Res. 46 (2007) 6189-6195. https://doi.org/10.1021/ie070059f
APHA, AWWA, WEF, Standard Methods for examination of water and wastewater, Washington DC, 22nd ed., 2012.
ChemSpider Search and Share Chemistry, Algestone acetophenide, 2018. Database: http://www.chemspider.com/Chemical-Structure.4447595.html. Accessed 20 May 2018.
ChemSpider Search and share chemistry, Estradiol enanthate, 2018. Database: http://www.chemspider.com/Chemical-Structure.19815.html. Accessed 20 May 2018.
USEPA, United States Environmental Protection Agency. Ecological effects test guidelines. OPPTS 850.4200, Seed Germination/Root Elongation Toxicity Test. EPA 712 C (1996) 96-154.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., McLaughlin, J. L., Brine Shrimp: a convenient general bioassay for active plant constituents, Journal of Medicinal Plant Research, 45 (1982) 31-34. https://doi.org/10.1055/s-2007-971236
Organization For Economic Cooperation And Development [OECD], Guideline for testing of chemicals, Daphnia sp. Acute Immobilization Test, France, Guideline No. 202, 2004.
Crespilho, F. N., Santana, C. G., Rezende, M. O. O., Tratamento de efluente da indústria de processamento de coco utilizando eletroflotação, Quim. Nova, 27 (2004) 387-392.
Benefield, L. D., Judkins, J. F., Weand, B. L., Process Chemistry for Water and Wastewater Treatment, Prentice-Hall, Englewood Cliffs, N.J., 1982.
Cook, M. M., Symonds, E. M., Gerber, B., Hoare, A., Van-Vleet, E. S., Breitbart, M., Removal of Six Estrogenic Endocrine-Disrupting Compounds (EDCs) from Municipal Wastewater Using Aluminum Electrocoagulation, Water 8 (2016) 128. https://doi.org/doi:10.3390/w8040128.
Garcia, L. F., Morais, R. L., Santos, W. T. P., Pacheco, C., Santiago, M. F., Gil, E. S., Low Cost Commercial Anodes on the Electrochemical Remediation of the Estrogen 17α-ethinylestradiol. J. Chem. Pharm. Res. 8 (2016) 958-96l.
Pal, A., Gin, KY-H., Lin, AY-C., Reinhard, M., Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects, Sci. Total Environ. 408 (2010) 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026
Kerr, J. L., Guo, Z., Smith, D. W., Goss, G. G., Belosevic, M. (2008) Use of goldfish to monitor wastewater and reuse water for xenobiotics, J. Environ. Eng. Sci. 7 (4) (2008) 369-383. https://doi.org/10.1139/S08-011
Leusch, F. D. L., Khan, S. J., Gagnon, M. M., Quayle, P., Trinh, T., Coleman, H., Rawson, C., Chapman, H. F., Blair, P., Nice, H., Reitsema, T., Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses, Water Res. 50 (2014) 420-431. https://doi.org/10.1016/j.watres.2013.10.056
Klauck, C. R., Giacobbo, A., Oliveira, E. D. L., Silva, L. B., Rodrigues, M. A. S., Evaluation of acute toxicity, cytotoxicity and genotoxicity of landfill leachate treated by biological lagoon and advanced oxidation processes, J. Environ. Chemic. Eng. 5 (2017) 6188–6193
Zhang, W., Liu, W., Zhang, J., Zhao, H., Zhang, Y., Quan, X., Jin, Y., Characterization of acute toxicity, genotoxicity and oxidative stress posed by textile effluent on zebrafish J. Environ. Sci. 24 (2012) 2019–2027.
Boutin, C., Strandberg, B., Carpenter, D., Mathiassen, S. K., Thomas, P. J., Herbicide impact on non-target plant reproduction: what are the toxicological and ecological implications? Environ. Pollut. 185 (2014) 295–306. https://dx.doi.org/10.1016/j.envpol.2013.10.009.
Oliveira, G. A. R., Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. B., Brull, N., Serret, J. T., Borràs, M., Disner, G. R., Cestari, M. M., Oliveira, D. P., A test battery for assessing the ecotoxic effects of textile dyes, Chem Biol Interact., 291 (2018) 171-179. https://doi.org/10.1016/j.cbi.2018.06.026
Wang, X., Sun, C., Gao, S., Wang, L., Shuokui, H., Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44 (2001) 1711–1721. https://doi.org/10.1016/s0045-6535(00)00520-8.
Lyu, J., Park, J., Pandey, L. K., Choi, S., Lee, H., De Saeger, J., Depuydt, S., Han, T., Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L, Ecotoxicol. Environ. Saf. 149 (2018) 225–232. http://dx.doi.org/10.1016/j.ecoenv.2017.11.006.
D'Abrosca, B., Fiorentino, A., Izzo, A., Cefarelli, G., Pascarella, M. T., Uzzo, P., Monaco, P., Phytotoxicity evaluation of five pharmaceutical pollutants detected in surface water on germination and growth of cultivated and spontaneous plants, J. Environ. Sci. Health A, 43 (2008) 285-294. https://doi.org/10.1080/10934520701792803
Nunes, B. S., Carvalho, F. D., Guilhermino, L. M., Stappen, G. B., Use of the genus Artemia in ecotoxicity testing, Environ. Pollut. 144 (2006) 453–462, https://dx.doi.org/10.1016/j.envpol.2005.12.037.
Libralato, G., Prato, E., Migliore, L., Cicero, A. M., Manfra, L., A review of toxicity testing protocols and endpoints with Artemia spp, Ecol. Indicat. 69 (2016) 35–49, https://dx.doi.org/10.1016/j.ecolind.2016.04.017.
Maselli, B. de S., Luna, L. A. V., Palmeira, J. de O., Tavares, K. P., Barbosa, S., Beijo, L. A., Umbuzeiro, G. A., Kummrow, F., Ecotoxicity of raw and treated effluents generated by a veterinary pharmaceutical company: a comparison of the sensitivities of different standardized tests, Ecotoxicology 24 (2015) 795–804. https://doi.org/10.1007/s10646-015-1425-9
Barron, L., Havel, J., Purcell, M., Szpak, M., Kelleher, B., Paull, B., Predicting sorption of pharmaceuticals and personal care products onto soil and digested sludge using artificial neural networks, Analyst 134 (2009) 663–670. https://doi.org/10.1039/b817822d