Cold gas spray coatings: basic principles corrosion protection and applications

Main Article Content

Fernando Santos da Silva
Núria Cinca
Sergi Dosta
Irene Garcia Cano
Josep Maria Guilemany
Assis Vicente Benedetti

Abstract

In this review, the beginnings and evolution of the cold gas spray (CGS) technique are described, followed by the main fundamental aspects of the technique together with a description of the several spraying systems up to date. Sequentially, the main spray parameters and their influence on the properties of the coatings are reported. Afterwards, the most important methodologies for preparing the feedstock powders to be sprayed, the effect of the powder composition, microstructure, particle size and shape on the properties of the coatings are discussed. The nature of the spray gun and nozzle, and the substrate pre-treatments were also discussed. With regard to microstructure and properties, the chemical and physical characterization of the coatings and the performance in protecting the substrates against corrosion together with some mechanical properties are presented and compared. The lacking systematic studies about the great part of investigated systems is the main drawback to compare the published results. Closing this review, the main applications, and the potentialities of the CGS coatings are evidenced.

Metrics

Metrics Loading ...

Article Details

How to Cite
Silva, F. S. da, Cinca, N., Dosta, S., Cano, I. G., Guilemany, J. M., & Benedetti, A. V. (2017). Cold gas spray coatings: basic principles corrosion protection and applications. Eclética Química, 42(1), 09–32. https://doi.org/10.26850/1678-4618eqj.v42.1.2017.p09-32
Section
Review

References

Champagne V. K. The cold spray materials deposition process Fundamentals and applications, 2007. https://doi.org/10.1533/9781845693787.frontmatter.

Grigoriev, S., Okunkova, A., Sova, A., Bertrand, P., Smurov, I. Cold spraying: From process fundamentals towards advanced applications, Surf. Coatings Technol. 268 (2014) 77–84. https://doi.org/10.1016/j.surfcoat.2014.09.060.

Klassen, T., Gärtner, F., Schmidt, T., Kliemann, J. O., Onizawa, K. Donner, K. R., Gutzmann, H., Binder, K., Kreye, H. Basic principles and application potentials of cold gas spraying, Materwiss. Werksttech. 41 (2010) 575–584. https://doi.org/10.1002/mawe.201000645.

Singh H., Sidhu T. S., Kalsi, S. B. S., Karthikeyan, J. Development of cold spray from innovation to emerging future coating technology, J. Brazilian Soc. Mech. Sci. Eng. 35 (2013) 231–245. https://doi.org/10.1007/s40430-013-0030-1.

Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., Dao, M. Cold spray coating: review of material systems and future perspectives, Surf. Eng. 30 (2014) 369–395. https://doi.org/10.1179/1743294414Y.0000000270.

Siao, A., Ang, M., Sanpo, N., Sesso, M. L., Kim, S.Y., Berndt, C.C. Thermal Spray Maps : Material Genomics of Processing Technologies, J. Therm. Spray Technol. 22 (2013) 1170–1183. https://doi.org/10.1007/s11666-013-9970-3.

Raoelison, R. N., Verdy, Ch., Liao, H. Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications, Mater. Des. 133 (2017) 266–287. https://doi.org/10.1016/J.MATDES.2017.07.067.

Sova, A., Grigoriev, S., Okunkova, A., Smurov, I. Potential of cold gas dynamic spray as additive manufacturing technology, Int. J. Adv. Manuf. Technol. 69 (2013) 2269–2278. https://doi.org/10.1007/s00170-013-5166-8.

Grujicic, M., Saylor, J. R., Beasley, D. E., DeRosset, W. S., Helfritch, D. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process, Appl. Surf. Sci. 219 (2003) 211–227. https://doi.org/10.1016/S0169-4332(03)00643-3.

Grujicic, M.; Sellappan, V.; Mears, L.; Seyr, N.; Obieglo, A.; Erdmann, M.; Holzleitner, J. Selection of the spraying technologies for over-coating of metal-stampings with thermo-plastics for use in direct-adhesion polymer metal hybrid load-bearing components. https://pdfs.semanticscholar.org/c959/71e51e2d9720135849cd961766a93369ff41.pdf (accessed November 23, 2017).

Couto, M., Dosta, S., Torrell, M., Fernández, J., Guilemany, J. M. Cold spray deposition of WC-17 and 12Co cermets onto aluminum, Surf. Coatings Technol. 235 (2013) 54–61. https://doi.org/10.1016/j.surfcoat.2013.07.011.

Bala, N., Singh, H., Karthikeyan, J., Prakash, S. Cold spray coating process for corrosion protection: a review, Surf. Eng. 30 (2014) 414–421. https://doi.org/10.1179/1743294413Y.0000000148.

Pawlowski, L. The science and enginnering of thermal spray coatings, John Wiley & Sons, Chichester, 2nd ed., 2008.

Henao, J., Concustell, A., Cano, I. G., Dosta, S., Cinca, N., Guilemany, J. M., Suhonen, T., Novel Al-based metallic glass coatings by Cold Gas Spray, Mater. and Des. 94 (2016) 253–261. https://doi.org/10.1016/j.matdes.2016.01.040.

Drehmann, R., Grund, T., Lampke, T., Wielage, B., Manygoats, K., Schucknecht, T., Rafaja, D. Splat formation and adhesion mechanisms of cold gas-sprayed al coatings on Al2O3 substrates, J. Therm. Spray Technol. 23 (2014) 68–75. https://doi.org/10.1007/s11666-013-9966-z.

Hassani-Gangaraj, M., Veysse, D., Nelson, K. A., Schuh, C. A. In-situ observations of single micro-particle impact bonding, Scripta Mater., 145, (2018), 9-13. https://doi.org/ 10.1016/j.scriptamat.2017.09.042.

Schmidt, T., Gärtner, F., Assadi, H., Kreye, H., Development of a generalized parameter window for cold spray deposition, Acta Mater. 54 (2006) 729-742. https://doi.org/10.1016/j.actamat.2005.10.005.

Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye H. Bonding mechanism in cold gas spraying, Acta Mater. 51 (2003) 4379-4394. https://doi.org/10.1016/S1359-6454(03)00274-X.

Grujicic, M., Zhao, C. L., DeRosset W. S., Helfritch, D. Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process, Mater. Des. 25 (2004) 681-688. https://doi.org/10.1016/j.matdes.2004.03.008.

Bae, G., Xiong, Y., Kumar, S., Kang, K., Lee, G., General aspects of interface bonding in kinetic sprayed coatings, Acta Mater. 56 (2008) 4858–4868. https://doi.org/10.1016/j.actamat.2008.06.003.

King, P. C, Busch, C., Kittel-Sherri, T., Jahedi , M., Gulizia, S., Interface melding in cold spray titanium particle impact, Surf. Coatings Technol. 239 (2014) 191–199. https://doi.org/ 10.1016/j.surfcoat.2013.11.039.

Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., Klassen, T. From particle acceleration to impact and bonding in cold spraying, J. Therm. Spray Technol. 18 (2009) 794–808. https://doi.org/10.1007/s11666-009-9357-7.

H. Assadi, H., Schmidt, T., Richter, H., Kliemann, J.-O., Binder, K., Gärtner, F., Klassen, T., Kreye, H., On Parameter Selection in Cold Spraying, J. Therm. Spray Technol. 20 (2011) 1161–1176. https://doi.org/ 10.1007/s11666-011-9662-9.

Li, C.-J., Li, W.-Y., Liao, H., Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, J. Therm. Spray Technol., 15 (2006) 212-222. https://doi.org/ 10.1361/105996306X108093.

Sun, C., Guo, L., GuanxiongLu, G., Lv, Y., Ye, F. Interface bonding between particle and substrate during HVOF spraying, Appl. Surf. Sci. 317 (2014) 908–913. https://doi.org/10.1016/J.APSUSC.2014.08.196.

Yin, S., Xie, Y., Suo, X., Liao, H., Wang, X. Interfacial bonding features of Ni coating on Al substrate with different surface pretreatments in cold spray, Mater. Lett. 138 (2015) 143–147. https://doi.org/10.1016/j.matlet.2014.10.016.

Suegama, P. H.; Fugivara, C. S; Benedetti, A. V.; Fernández, J.; Espallargas, N.; Delgado, J., Guilemany, J. M. New Research on Electrochemistry, in: Nova Science Publishers, 2007: pp. 113–151.

Li, W. Y., Zhang, C., Guo, X. P., Zhang, G., Liao, H. L., Li, C. J., Coddet, C. Effect of standoff distance on coating deposition characteristics in cold spraying, Mater. Des. 29 (2008) 297–304. https://doi.org/10.1016/j.matdes.2007.02.005.

Li, C.-J., Li, W.-Y., Wang, Y.-Y., Effect of Spray Angle on Deposition Characteristics in Cold Spraying, Advancing the Science & Applying the Technology, (Ed.) C. Moreau and B. Marple, ASM International, Materials Park, Ohaio, 2003, 91-96.

Ernst, K.-R., Braeutigam, J., Gärtner, F., Klassen, T., Effect of Substrate Temperature on Cold-Gas-Sprayed Coatings on Ceramic Substrates, J. Therm. Spray Technol. 22 (2012) 422-432. https://doi.org/ 10.1007/s11666-012-9871-x.

Kay, C. M, Karthikeyan, J. High Pressure Cold Spray, ASM International, 2016.

German, R. M., Powder metallurgy and particulate materials processing, Metal Powder Industry, Princeton, 2005.

Lagutkin, S., Achelis, L., Sheikhaliev, S., Uhlenwinkel, V., Srivastava, V. Atomization process for metal powder, Materials Sci. Eng.: A, 383 (2004) 1–6. https://doi.org/10.1016/j.msea.2004.02.059.

Powder production - LPW Technology. http://www.lpwtechnology.com/technical-library/powder-production/ (accessed November 23, 2017).

Dosta, S., Couto, M., Guilemany, J. M. Cold spray deposition of a WC-25Co cermet onto Al7075-T6 and carbon steel substrates, Acta Mater. 61 (2013) 643–652. https://doi.org/10.1016/j.actamat.2012.10.011.

Couto, M., Dosta, S., Fernández, J., Guilemany, J. M. Comparison of the Mechanical and Electrochemical Properties of WC-25Co Coatings Obtained by High Velocity Oxy-Fuel and Cold Gas Spraying, J. Therm. Spray Technol. 23 (2014) 1251–1258. https://doi.org/10.1007/s11666-014-0123-0.

Berger, L.-M. Hardmetals as thermal spray coatings, Powder Metall. 50 (2007) 205–214. https://doi.org/10.1179/174329007X246078.

Shin, H., Lee, S. Suk, Jung, H., Kim, J. B. Effect of ball size and powder loading on the milling efficiency of a laboratory-scale wet ball mill, Ceram. Int. 39 (2013) 8963–8968. https://doi.org/10.1016/j.ceramint.2013.04.093.

Tangsathitkulchai, C. Acceleration of particle breakage rates in wet batch ball milling, Powder Technol. 124 (2002) 67–75. https://doi.org/10.1016/S0032-5910(01)00477-6.

Villafuerte J. Modern cold spray : materials, process, and applications, Springer International Publishing, 2015.

Moridi, A., Hassani-Gangaraj, S. M., Guagliano, M., Dao, M. Cold spray coating: review of material systems and future perspectives, Surf. Eng. 36(6) (2014) 369-395. https://doi.org/10.1179/1743294414Y.0000000270.

Robotti, M., Dosta, S., Fernández-Rodríguez, C., Hernández-Rodríguez, M. J., Cano, I. G., Melián, E. P., Guilemany, J. M. Photocatalytic abatement of NOx by C-TiO2/polymer composite coatings obtained by low pressure cold gas spraying, Appl. Surf. Sci. 362 (2016) 274–280. https://doi.org/10.1016/j.apsusc.2015.11.207.

Cold gas spray (CGS), Communications material, Thermal Spray Center.

Cinca, N., Rebled, J. M., Estradé, S., Peiró, F., Fernández, J., Guilemany, J. M., Influence of the particle morphology on the Cold G Spray deposition behavior of titanium on aluminum light alloys, J. Alloys Compd. 554 (2013) 89-96. https://doi.org/10.1016/j.allcom.2012.11.069.

About Cold Gas Spraying and overview systems, Duiven. https://www.fst.nl/systems/cold-gas-spray/ (accessed October 24, 2017).

Li, W.-Y., Liao, H., Douchy, G., Coddet, C., Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder, Mater. Des. 28 (2007) 2129–2137. https://doi.org/10.1016/j.matdes.2006.05.016.

Silva, F. S. da, Bedoya, J., Dosta, S., Cinca, N., Cano, I. G., Guilemany, J. M., Benedetti, A. V. Corrosion characteristics of cold gas spray coatings of reinforced aluminum deposited onto carbon steel, Corros. Sci. 114 (2017) 57–71. https://doi.org/10.1016/j.corsci.2016.10.019.

Richer, P., Jodoin, B., Ajdelsztajn, L., Lavernia, E. J. Substrate Roughness and Thickness Effects on Cold Spray Nanocrystalline Al-Mg Coatings, J. Therm. Spray Technol. 15 (2006) 246–254. https://doi.org/10.1361/105996306X108174.

Metal/ Environment Reactions, Newnes-Butterworth, 2nd edition, 1976.

Bai, Y., Wang, Z. H., Li, X. B., Huang, G. S., Li, C., X. Li, Y. Corrosion behavior of low pressure cold sprayed Zn-Ni composite coatings, J. Alloys Compd. 719 (2017) 194–202. https://doi.org/10.1016/j.jallcom.2017.05.134.

Suna, W., Tan, A. W., Y., Marinescu, I., Toh, W. Q., Liu, E. Adhesion, tribological and corrosion properties of cold-sprayed CoCrMo and Ti6Al4V coatings on 6061-T651 Al alloy, Surf. Coatings Technol. 326 (2017) 291–298. https://doi.org/10.1016/J.SURFCOAT.2017.07.062.

Diab, M., Pang X., Jahed, H. The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion, Surf. Coatings Technol. 309 (2017) 423–435. https://doi.org/10.1016/J.surfcoat.2016.11.014.

Y. Tao, T. Xiong, C. Sun, L. Kong, X. Cui, T. Li, G.L. Song, Microstructure and corrosion performance of a cold sprayed aluminium coating on AZ91D magnesium alloy, Corros. Sci. 52 (2010) 3191–3197. https://doi.org/10.1016/j.corsci.2010.05.023.

Khun, N. W., Tan, A., W. Y., Sun, W., Liu, E. Wear and Corrosion Resistance of Thick Ti-6Al-4V Coating Deposited on Ti-6Al-4V Substrate via High-Pressure Cold Spray, J. Therm. Spray Technol. 26 (2017) 1393–1407. https://doi.org/10.1007/s11666-017-0588-8.

Chavan, N. M., Kiran, B., Jyothirmayi, A., Phani, P. S., Sundararajan, G., The corrosion behavior of cold sprayed zinc coatings on mild steel substrate, J. Therm. Spray Technol. 22 (2013) 463–470. https://doi.org/10.1007/s11666-013-9893-z.

Zhu, Q. J., Wang, K., Wang, X. H., Hou, B. R. Electrochemical impedance spectroscopy analysis of cold sprayed and arc sprayed aluminium coatings serviced in marine environment, Surf. Eng. 28 (2012) 300–305. https://doi.org/10.1179/1743294411Y.0000000036.

DeForce, B. S., Eden, T. J., Potter, J. K., Cold Spray Al-5% Mg Coatings for the Corrosion Protection of Magnesium Alloys, J. Therm. Spray Technol. 20 (2011) 1352–1358. https://doi.org/10.1007/s11666-011-9675-4.

Wang, H. R., Hou, B. R., Wang, J., Wang, Q., Li, W. Y., Effect of process conditions on microstructure and corrosion resistance of cold-sprayed Ti coatings, J. Therm. Spray Technol. 17 (2008) 736–741. https://doi.org/10.1007/s11666-008-9256-3.

Kumar, S., Vidyasagar, V., Jyothirmayi, A., Joshi, S. V. Effect of Heat Treatment on Mechanical Properties and Corrosion Performance of Cold-Sprayed Tantalum Coatings, J. Therm. Spray Technol. 25 (2016) 745–756. https://doi.org/10.1007/s11666-016-0388-6.

Sundararajan, G., Sudharshan Phani, P., Jyothirmayi, A., Gundakaram, R. C., The influence of heat treatment on the microstructural, mechanical and corrosion behaviour of cold sprayed SS 316L coatings, J. Mater. Sci. 44 (2009) 2320–2326. https://doi.org/10.1007/s10853-008-3200-2.

Ma, C., Liu, X., Zhou, C. Cold-Sprayed Al Coating for Corrosion Protection of Sintered NdFeB, J. Therm. Spray Technol. 23 (2014) 456–462. https://doi.org/10.1007/s11666-013-9994-8.

Spencer, K., Zhang, M. X. Optimisation of stainless steel cold spray coatings using mixed particle size distributions, Surf. Coatings Technol. 205 (2011) 5135–5140. https://doi.org/10.1016/J.SURFCOAT.2011.05.020.

Zhou, X., Mohanty, P. Electrochemical behavior of cold sprayed hydroxyapatite/titanium composite in Hanks’ solution, Electrochim. Acta. 65 (2012) 134–140. https://doi.org/10.1016/j.electacta.2012.01.018.

Diab, M., Pang, X., Jahed, H. The effect of pure aluminum cold spray coating on corrosion and corrosion fatigue of magnesium (3% Al-1% Zn) extrusion, Surf. Coatings Technol. 309 (2017) 423–435. https://doi.org/10.1016/j.surfcoat.2016.11.014.

Rokni, M. R, Widener, C. A., Champagne, V. K., Crawford, G.A., Nutt, S.R. The effects of heat treatment on 7075 Al cold spray deposits, Surf. Coatings Technol. 310 (2017) 278–285. https://doi.org/10.1016/J.SURFCOAT.2016.10.064.

Rokni, M. R., Widener, C. A., Ozdemir, O. C., Crawford, G. A. Microstructure and mechanical properties of cold sprayed 6061 Al in As-sprayed and heat treated condition, Surf. Coatings Technol. 309 (2017) 641–650. https://doi.org/10.1016/J.SURFCOAT.2016.12.035

Kumar, S., KiranReddy, S., Joshi, S. V. Microstructure and performance of cold sprayed Al-SiC composite coatings with high fraction of particulates, Surf. Coatings Technol. 318 (2017) 62–71. https://doi.org/10.1016/J.SURFCOAT.2016.11.047.

Watson, T. J., Nardi, A., Ernst, A. T., Cernatescu, I., Bedard, B. A., Aindow, M. Cold spray deposition of an icosahedral-phase-strengthened aluminum alloy coating, Surf. Coatings Technol. 324 (2017) 57–63. https://doi.org/10.1016/J.SURFCOAT.2017.05.049.

Meydanoglu, O., Jodoin, B., Kayali, E. S. Surface & Coatings Technology Microstructure , mechanical properties and corrosion performance of 7075 Al matrix ceramic particle reinforced composite coatings produced by the cold gas dynamic spraying process, Surf. Coat. Technol. 235 (2013) 108–116. https://doi.org/10.1016/j.surfcoat.2013.07.020.

Morgan, R., Fox, P., Pattison, J., Sutcliffe, C., Neill, W. O. Analysis of cold gas dynamically sprayed aluminium deposits, Mater. Lett. 58 (2004) 1317–1320. https://doi.org/10.1016/j.matlet.2003.09.048.

Rech, S., Trentin, A., Vezzù, S., Vedelago, E., Legoux, J.-G., Irissou, E., Different Cold Spray Deposition Strategies: Single- and Multi-layers to Repair Aluminium Alloy Components, J. Therm. Spray Technol. 6061 (2014) 1237–1250. https://doi.org/10.1007/s11666-014-0141-y.

Ogawa, K., Ito, K., Ichimura, K., Ichikawa, Y., Ohno, S., Onda, N., Characterization of low-pressure cold-sprayed aluminum coatings, J. Therm. Spray Technol. 17 (2008) 728–735. https://doi.org/10.1007/s11666-008-9254-5.

Spencer, K., Fabijanic, D. M., Zhang, M. X., The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys, Surf. Coatings Technol. 204 (2009) 336–344. https://doi.org/10.1016/j.surfcoat.2009.07.032.

Bakshi, S. R., Wang, D., Price, T., Zhang, D., Keshri, A. K., Chen, Y., McCartney, D. G., Shipway, P. H., Agarwal, A. Microstructure and wear properties of aluminum/aluminum-silicon composite coatings prepared by cold spraying, Surf. Coatings Technol. 204 (2009) 503–510. https://doi.org/10.1016/j.surfcoat.2009.08.018.

Bu, H., Yandouzi, M., Lu, C., Jodoin, B., Post-heat treatment effects on cold-sprayed aluminum coatings on AZ91D magnesium substrates, J. Therm. Spray Technol. 21 (2012) 731–739. https://doi.org/10.1007/s11666-012-9785-7.

Legoux, J. G., Irissou, E., Moreau, C. Effect of Substrate Temperature on the Formation Mechanism of Cold-Sprayed Aluminum, Zinc and Tin Coatings, J. Therm. Spray Technol. 16 (2007) 619–626. https://doi.org/10.1007/s11666-007-9091-y.

Hall, A. C., Brewer, L. N., Roemer, T. J., Preparation of aluminum coatings containing homogenous nanocrystalline microstructures using the cold spray process, J. Therm. Spray Technol. 17 (2008) 352–359. https://doi.org/10.1007/s11666-008-9180-6.

Hall, A. C., Cook, D. J., Neiser, R. A., Roemer, T. J., Hirschfeld, D. A. The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol. 15 (2006) 233–238. https://doi.org/10.1361/105996306X108138.

Tao, Y., Xiong, T., Sun, C., Jin, H., Du, H., Li, T., Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy, Appl. Surf. Sci. 256 (2009) 261–266. https://doi.org/10.1016/j.apsusc.2009.08.012.

Bakshi, S. R., Laha, T., Balani, K., Agarwal, A., Karthikeyan, J. Effect of carrier gas on mechanical properties and fracture behaviour of cold sprayed aluminium coatings, Surf. Eng. 23 (2007) 18–22. https://doi.org/10.1179/174329407X161618.

Ajdelsztajn, L., Zúñiga, A., Jodoin, B., Lavernia, E. J. Cold gas dynamic spraying of a high temperature Al alloy, Surf. Coatings Technol. 201 (2006) 2109–2116. https://doi.org/10.1016/j.surfcoat.2005.06.001.

Lahiri, D., Gill, P. K., Scudino, S., Zhang, C., Singh, V., Karthikeyan, J., Munroe, N., Seal, S., Agarwal, A. Cold sprayed aluminum based glassy coating: Synthesis, wear and corrosion properties, Surf. Coatings Technol. 232 (2013) 33–40. https://doi.org/10.1016/j.surfcoat.2013.04.049.

Dzhurinskiy, D., Maeva, E., Leshchinsky, E., Maev, R. G. Corrosion protection of light alloys using low pressure cold spray, J. Therm. Spray Technol. 21 (2012) 304–313. https://doi.org/10.1007/s11666-011-9729-7.

Sharma, M. M., Eden, T. J., Golesich, B. T. Effect of Surface Preparation on the Microstructure, Adhesion, and Tensile Properties of Cold-Sprayed Aluminum Coatings on AA2024 Substrates, J. Therm. Spray Technol. 24 (2014) 410–422. https://doi.org/10.1007/s11666-014-0175-1.

Rokni, M. R., Widener, C. A., Champagne, V. R. Microstructural Evolution of 6061 Aluminum Gas-Atomized Powder and High-Pressure Cold-Sprayed Deposition, J. Therm. Spray Technol. 23 (2013) 514–524. https://doi.org/10.1007/s11666-013-0049-y.

Jodoin, B., Ajdelsztajn, L., Sansoucy, E., Zúñiga, A., Richer, P., Lavernia, E. J. Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings, Surf. Coatings Technol. 201 (2006) 3422–3429. https://doi.org/10.1016/j.surfcoat.2006.07.232.

Ziadi, A., Belzunce, F. J., Rodriguez, C. The effects of heat treatment on the mechanical properties of multicomponent white cast irons, J. Mater. Sci. (2007). https://doi.org/10.1007/s10853-006-1448-y.

Ngai, S., Ngai, T., Vogel, F., Story, W., Thompsom, G. B.; Brewer, L. N. Saltwater corrosion behavior of cold sprayed AA7075 aluminum alloy coatings, Corros. Sci. 130 (2018) 231–240. https://doi.org/10.1016/J.CORSCI.2017.10.033.

McCafferty, E. Sequence of steps in the pitting of aluminum by chloride ions, Corros. Sci. 45 (2003) 1421–1438. https://doi.org/10.1016/S0010-938X(02)00231-7.

Hassani-Gangaraj, S. M., Moridi, A., Guagliano, M. Critical review of corrosion protection by cold spray coatings, Surf. Eng. 31 (2015) 803–815. https://doi.org/10.1179/1743294415Y.0000000018.

Silva, F. S. da, Dosta, S., Cano, I. G., Couto, M., Guilemany, J. M., Benedetti, A. V. Corrosion behavior of WC-Co coatings deposited by Cold Gas Spray onto Al 7075-T6, Corr. Sci., 2017 submitted.

Silva, F. S. da, Dosta, S., Zomeño, K., Cinca, N., Cano, I. G., Couto, M., Guilemany, J. M., Benedetti, A. V. Influence of different copper feedstock powders on the microstructure and corrosion of coatings prepared by cold gas spray, Corr. Sci., 2017 submitted.

Huang, R., Sone, M., Ma, W., Fukanuma, H. The effects of heat treatment on the mechanical properties of cold-sprayed coatings, Surf. Coatings Technol. 261 (2015) 278–288. https://doi.org/10.1016/J.SURFCOAT.2014.11.017.

Gärtner, F., Stoltenhoff, T., Voyer, J., Kreye, H., Riekehr, S., Koçak, M. Mechanical properties of cold-sprayed and thermally sprayed copper coatings, Surf. Coatings Technol. 200 (2006) 6770–6782. https://doi.org/10.1016/J.SURFCOAT.2005.10.007.

Arabgol, Z., Assadi, H., Schmidt, T., Gärtner, F., Klassen, T. Analysis of Thermal History and Residual Stress in Cold-Sprayed Coatings, J. Therm. Spray Technol. 23 (2014) 84–90. https://doi.org/10.1007/s11666-013-9976-x.

Hall, A. C., Cook, D. J., Neiser, R. A., Roemer, T. J., Hirschfeld, D. A. The Effect of a Simple Annealing Heat Treatment on the Mechanical Properties of Cold-Sprayed Aluminum, J. Therm. Spray Technol. 15 (2006) 233–238. https://doi.org/10.1361/105996306X108138.

Bu, H., Yandouzi, M., Lu, C., Jodoin, B. Post-heat Treatment Effects on Cold-Sprayed Aluminum Coatings on AZ91D Magnesium Substrates, J. Therm. Spray Technol. 21 (2012) 731–739. https://doi.org/10.1007/s11666-012-9785-7.

Sudharshan Phani, P., Srinivasa Rao, D., Joshi, S.V., Sundararajan, G. Effect of Process Parameters and Heat Treatments on Properties of Cold Sprayed Copper Coatings, J. Therm. Spray Technol. 16 (2007) 425–434. https://doi.org/10.1007/s11666-007-9048-1.

Li, W.-Y., Li, C.-J., Liao, H., Effect of Annealing Treatment on the Microstructure and Properties of Cold-Sprayed Cu Coating, J. Therm. Spray Technol. 15 (2006) 206–211. https://doi.org/10.1361/105996306X108066.

Meng, X. M., Zhang, J. B., Han, W., Zhao, J. Influence of annealing treatment on cold rolling behaviour of 304SS coating by cold spraying, Mater. Res. Innov. 16 (2012) 73–78. https://doi.org/10.1179/1433075X11Y.0000000018.

Wong, W., Irissou, E., Vo, P., Sone, M., Bernier, F., Legoux, J.-G., Fukanuma, H., Yue, S., Cold Spray Forming of Inconel 718, J. Therm. Spray Technol. 22 (2013) 413–421. https://doi.org/10.1007/s11666-012-9827-1.

Sajjadi, S. A., Ezatpour, H. R., Beygi, H. Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A. 528 (2011) 8765–8771. https://doi.org/10.1016/j.msea.2011.08.052.

Miyajima, T., Iwai, Y., Effects of reinforcements on sliding wear behavior of aluminum matrix composites, Wear. 255 (2003) 606–616. https://doi.org/10.1016/S0043-1648(03)00066-8.

Kim, H. J., Lee, C. H., Hwang, S. Y., Superhard nano WC-12%Co coating by cold spray deposition, Mater. Sci. Eng. A. 391 (2005) 243–248. https://doi.org/10.1016/j.msea.2004.08.082.

Peat, T., Galloway, A., Toumpis, A., Steel, R., Zhu, W., Iqbal, N. Enhanced erosion performance of cold spray co-deposited AISI316 MMCs modified by friction stir processing, Mater. Des. 120 (2017) 22–35. https://doi.org/10.1016/j.matdes.2017.01.099.

Triantou, K. I., Pantelis, D. I., Guipont, V., Jeandin, M. Microstructure and tribological behavior of copper and composite copper+alumina cold sprayed coatings for various alumina contents, Wear. 336–337 (2015) 96–107. https://doi.org/10.1016/J.WEAR.2015.05.003.

Phani, P. S., V.Vishnukanthan, V., Sundararajan, G. Effect of heat treatment on properties of cold sprayed nanocrystalline copper alumina coatings, Acta Mater. 55 (2007) 4741–4751. https://doi.org/10.1016/J.ACTAMAT.2007.04.044.

Assadi, H., Kreye, H., Gärtner, F., Klassen, T. Cold spraying – A materials perspective, Acta Mater. 116 (2016), 382-407. https://doi.org/ 10.1016/j.actamat.2016.06.034.

Partovi-Nia, R., Ramamurthy, S., Zagidulin, D. J. Chen, R. Jacklin, P. Keech, D.W. Shoesmith, Corrosion of Cold Spray Deposited Copper Coating on Steel Substrates, Corrosion. 71 (2015) 1237–1247. https://doi.org/10.5006/1757.

Rokni, M. R, Nutt, S. R., Widener, C. A., Champagne, V. K., Hrabe, R. H. Review of Relationship Between Particle Deformation-Coating Microstructure and Properties in High Pressure Cold Spray. J. Therm. Spray Technol. (2017) 1-40. https://doi.org/10.1007/s11666-017-0575-0.

Cinca, N., Barbosa, M., Dosta, S., Guilemany, J. M. Study of Ti deposition onto Al alloy by cold gas spraying, Surf. Coatings Technol. 205 (2010) 1096–1102. https://doi.org/10.1016/j.surfcoat.2010.03.061.

Kear, G., Barker, B. D., Stokes, K., Walsh, F. C. Electrochemical Corrosion Behaviour of 90–10 Cu–Ni Alloy in Chloride-Based Electrolytes, J. Appl. Electrochem. 34 (2004) 659–669. https://doi.org/10.1023/B:JACH.0000031164.32520.58.

Koivuluoto, H., Bolelli, G., Lusvarghi, L., Casadei, F., Vuoristo, P. Corrosion resistance of cold-sprayed Ta coatings in very aggressive conditions, Surf. Coatings Technol. 205 (2010) 1103–1107. https://doi.org/10.1016/J.SURFCOAT.2010.02.052.

Henao, J., Concustell. A., Dosta, S., G.Bolelli, G., Cano, I. G., Lusvarghi, L., Guilemany, J. M. Deposition mechanisms of metallic glass particles by Cold Gas Spraying, Acta Mater. 125 (2017) 327–339. https://doi.org/10.1016/J.ACTAMAT.2016.12.007.

Wang, Y., Normand, B., Mary, N., Yu, M., Liao, H. Microstructure and corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings, Surf. Coatings Technol. 251 (2014) 264–275. https://doi.org/10.1016/J.SURFCOAT.2014.04.036.

Koivuluoto, H., Lagerbom, J., Vuoristo, P. Microstructural studies of cold sprayed copper, nickel, and nickel-30% copper coatings, J. Therm. Spray Technol. 16 (2007) 488–497. https://doi.org/10.1007/s11666-007-9060-5.

Oliveira, A. B., Bastos, A. C., Fernandes, C. M., Pinho, C. M. S., Senos, A. M. R., Soares, E., Sacramento, J., Zheludkevich, M. L. Ferreira, M.G.S. Corrosion behaviour of WC-10% AISI 304 cemented carbides, Corros. Sci. 100 (2015) 322–331. https://doi.org/10.1016/j.corsci.2015.08.006.

Wolfe, D. E., Eden, T. J., Potter, J. K., Jaroh, A. P., Investigation and characterization of Cr3C2-based wear-resistant coatings applied by the cold spray process, J. Therm. Spray Technol. 15 (2006) 400–412. https://doi.org/10.1361/105996306X124400.

Vucko, M. J., King, P. C., Poole, A. J., Carl, C., Jahedi, M. Z., de Nys, R., Cold spray metal embedment: an innovative antifouling technology., Biofouling. 28 (2012) 239–48. https://doi.org/10.1080/08927014.2012.670849.

Vucko, M. J., King, P. C., Poole, A. J., Hu, Y., Jahedi, M. Z., de Nys, R., Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles., Biofouling. 30 (2014) 651–66. https://doi.org/10.1080/08927014.2014.906584.

Feng, C., Guipont, V., Jeandin, M., Amsellem, O., Pauchet, F., Saenger, R., Bucher, S., Iacob, C. B4C/Ni Composite Coatings Prepared by Cold Spray of Blended or CVD-Coated Powders, J. Therm. Spray Technol. 21 (2012) 561–570. https://doi.org/10.1007/s11666-012-9774-x.

Vilardell, A. M., Cinca, N., Cano, I. G., Concustell, A., Dosta, S., Guilemany, J. M., Estradé, S., Ruiz-Caridad, A., Peiró, F. Dense nanostructured calcium phosphate coating on titanium by cold spray, J. Eur. Ceram. Soc. 37 (2017) 1747–1755. https://doi.org/10.1016/j.jeurceramsoc.2016.11.040.

Bakshi, S. R., Singh, V., Balani, K., McCartney, D.G., Seal, S., Agarwal, A. Carbon nanotube reinforced aluminum composite coating via cold spraying, Surf. Coatings Technol. 202 (2008) 5162–5169. https://doi.org/10.1016/j.surfcoat.2008.05.042.

Lee, H. Y., Yu, Y. H., Lee, Y. C., Hong, Y. P., Ko, K. H. Cold Spray of SiC and Al2O3 with Soft Metal Incorporation: A Technical Contribution, J. Therm. Spray Technol. 13 (2004) 184–189. https://doi.org/10.1361/10599630419355.

Wang, Y., Normand, B., Mary, N., Yu, M., Liao, H. Effects of ceramic particle size on microstructure and the corrosion behavior of cold sprayed SiCp/Al 5056 composite coatings, Surf. Coatings Technol. 315 (2017) 314–325. https://doi.org/10.1016/j.surfcoat.2017.02.047.

Hodder, K. J., Nychka, J. A., McDonald, A. G. Comparison of 10 μm and 20 nm Al-Al2O3 Metal Matrix Composite Coatings Fabricated by Low-Pressure Cold Gas Dynamic Spraying, J. Therm. Spray Technol. 23 (2014) 839–848. https://doi.org/10.1007/s11666-014-0094-1.

Bush, T. B., Khalkhali, Z., Champagne, V., Schmidt, D. P., Rothstein, J. P. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders, J. Therm. Spray Technol. 26 (2017) 1548–1564. https://doi.org/10.1007/s11666-017-0627-5.

Ichikawa, Y., Ogawa, K., Nonaka, I. High-Temperature Oxidation Behavior of Cold-Sprayed MCrAlY Coatings, J. Soc. Mater. Sci. Japan. 60 (2011) 159–166. https://doi.org/10.2472/jsms.60.159.

Cinca, N. Guilemany, J. M. Thermal spraying of transition metal aluminides: An overview, Intermetallics. 24 (2012) 60–72. https://doi.org/10.1016/j.intermet.2012.01.020.

Luo, X. T., Li, C. X., Shang, F. L., Yang, G. J., Wang, Y. Y., Li, C. J. WC-Co Composite Coating Deposited by Cold Spraying of a Core-Shell-Structured WC-Co Powder, J. Therm. Spray Technol. 24 (2014) 100–107. https://doi.org/10.1007/s11666-014-0133-y.

Kim, H. J., Lee, C. H., Hwang, S.Y. Fabrication of WC-Co coatings by cold spray deposition, Surf. Coatings Technol. 191 (2005) 335–340. https://doi.org/10.1016/j.surfcoat.2004.04.058.