Abstract
O uso de tecnologias não térmicas de irradiação, tais como microondas, pode simplificar o processo de clarificação do caldo de cana-de-açúcar. Assim, o objetivo deste estudo foi purificar o caldo de cana de açúcar por radiação de microondas a fim de produzir açúcar e etanol. Os resultados foram submetidos à análise de variância (ANOVA) seguida pelo teste Tukey com nível de significância 0,05. Quanto ao material original e processado, foi analisado quanto a: turbidez, cor, sólidos solúveis totais (Brix) e pH, assim como microbiologicamente. Os resultados mostraram que o microondas nas condições testadas não promoveu a clarificação do caldo de cana de açúcar e, também, teve um aumento significativo em ° Brix.
References
MELQUIADES, F.L. et al. Direct Determination of Sugar Cane Quality Parameters by X-ray Spectrometry and
Multivariate Analysis. Journal of Agricultural and Food Chemistry, Campinas, p. 10755-10761. 05 out. 2012.
ALKASRAWI, M.; JRAI, A. A.; AL-MUHTASEB, A. H.. Simultaneous saccharification and fermentation
process for ethanol production from steam-pretreated softwood: Recirculation of condensate streams. Chemical
Engineering Journal, Muscat, p. 574-579. 13 abr. 2013.
MORAES, B.S. et al. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy,
environmental, and economic perspectives: Profit or expense?. Applied Energy, São Paulo, p. 825-835. 4 set.
SUN, X.; FUJIMOTO, S.; MINOWA, T.. A comparison of power generation and ethanol production using
sugarcane bagasse from the perspective of mitigating GHG emissions. Energy Policy, Hiroshima, p. 624-629. 5
mar. 2013.
NOGUEIRA, A.M.P.; VENTURINI FILHO, W.G.. Clarificação de Caldo de Cana por Micro e Ultrafiltração:
Comprovação de Viabilidade Técnica em Experimentos Preliminares. Brazilian Journal of Food Technology, p.
-62. 29 mar. 2007.
TEIXEIRA, E.F. et al. O uso de aparelhos de Micro-ondas domésticos em aulas experimentais de química
orgânica: Nitração de salicilaldeído. Química Nova, Rio de Janeiro, p. 1603-1606. 9 ago. 2010.
CAVICCHIOLI, A.; GUTZ, I.G.R.. O uso de radiação Ultravioleta para o pré-tratamento de amostras em análise
inorgânica. Química Nova, São Paulo, p. 913-921. 15 abr. 2003.
HANH-HÄNGERDAL, B. et al. Bio-ethanol – the fuel of tomorow from the residues of today. TRENDS in
Biotechnology, Lund, p. 549-556. 16 out. 2006.
WALTER, A. et al. Sustainability assessment of bio-ethanol production in Brazil considering land use change,
GHG emissions and socio-economic aspects. Energy Policy, Campinas, p. 5703-5716. 03 set. 2010.
BALAT, M.; BALAT, H.; ÖZ, C.. Progress in bioethanol processing. Progress in Energy and Combustion
Science, Trabzon, p. 551-573. 28 jan. 2008.
FURTADO, A.T.; SCANDIFFIO, M. I. G.; CORTEZ, L. A. B.. The Brazilian sugarcane innovation system.
Energy Policy, Campinas, p. 156-166. 15 out. 2010.
TRIANA, C.A.R.. Energetics of Brazilian ethanol: Comparison between assessment approaches. Energy
Policy, Bogotá, p. 4605-4613. 01 maio 2011.
GHORBANI, F. et al. Cane molasses fermentation for continuous ethanol production in an immobilized cells
reactor by Saccharomyces cerevisiae. Renewable Energy, Noor, p. 503-509. 14 ago. 2010.
GRAY, K. A.; ZHAO, L.; EMPTAGE, M.. Bioethanol. Current Opinion in Chemical Biology, San Diego, p.
-146. 7 mar. 2006.
SINGH, A.; BISHNOI, N.R.. Optimization of ethanol production from microwave alkali pretreated rice straw
using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, Haryana, p.
-341. 20 jan. 2012.
WOJTCZAK, M.; BIERNASIAK, J.; PAPIEWSKA, A.. Evaluation of microbiological purity of raw and
refined white cane sugar. Food Control, Lodz, p. 136-139. 12 out. 2011.
OLIVEIRA, A.C.G. et al. Efeitos do processamento térmico e da radiação gama na conservação de caldo de
cana puro e adicionado de suco de frutas. Ciência e Tecnologia de Alimentos, Piracicaba, p. 863-873. 05 ago.
ARAÚJO, F. A. D.. Processo de clarificação do caldo de cana pelo método da bicarbonatação. Ciência e
Tecnologia de Alimentos, dez. 2007.
PRATI, P.; MORETTI, R.H.. Study of clarification process of sugar cane juice for consumption. Ciência e
Tecnologia de Alimentos, São Pedro, p. 776-783. 25 set. 2009.
DOHERTY, W. O. S.. Improved Sugar Cane Juice Clarification by Understanding Calcium Oxide-PhosphateSucrose
Systems. Journal of Agricultural and Food Chemistry, Brisbane, p. 1829-1836. 15 fev. 2011.
JEGATHEESAN, V. et al. Performance of ceramic micro and ultrafiltration membranes treating limed and
partially clarified sugar cane juice. Journal of Membrane Science, Townsville, p. 69-77. 17 nov. 2008.
EGGLESTON, G.; GRISHAM, M.; ANTOINE, A.. Clarification Properties of Trash and Stalk Tissues from
Sugar Cane. Journal of Agricultural and Food Chemistry, New Orleans, p. 366-373. 12 ago. 2009.
JONES, D. A. et al. Microwave heating applications in environmental engineering —a review. Resources,
Conservation and Recycling, Nottingham, p. 75-90. 18 jun. 2001.
SOUZA, R.O.M. A.; MIRANDA, L.S.M.. Irradiação de Micro-Ondas Aplicada à Síntese Orgânica: Uma
História de Sucesso no Brasil. Química Nova, Rio de Janeiro, p. 497-506. 31 jan. 2011.
MENÉNDEZ, J.A.. Microwave heating processes involving carbon materials. Fuel Processing
Technology, Oviedo, p. 1-8. 28 ago. 2009.
APPELS, L. et al. Influence of microwave pre-treatment on sludge solubilization and pilot scale semicontinuous
anaerobic digestion.Bioresource Technology, Heverlee, p. 598-603. 10 nov. 2012.
DONG-LIANG, L. et al. In situ hydrate dissociation using microwave heating: Preliminary study. Energy
Conversion and Management, Guangzhou, p. 2207-2213. 21 mar. 2008.
ZIELINSKI, M. et al. Influence of microwave radiation on bacterial community structure in biofilm. Process
Biochemistry, Olsztyn, p. 1250-1253. 10 maio 2007.
ZIELINSKI, M.; ZIELINSKA, M.; DEBOWSKI, M.. Application of microwave radiation to biofilm heating
during wastewater treatment in trickling filters. Bioresource Technology, Olsztyn, p. 223-230. 5 out. 2012.
ESKICIOGLU, C. et al. Athermal microwave effects for enhancing digestibility of waste activated
sludge. Water Research, Ottawa, p. 2457-2466. 23 abr. 2007.
CHANDRASEKARAN, S.; RAMANATHAN, S.; BASAK, T.. Microwave food processing—A review. Food
Research International, Chennai, p. 243-261. 21 fev. 2013.
KRECH, T. et al. Microwave radiation as a tool for process intensification in exhaust gas treatment. Chemical
Engineering and Processing: Process Intensification, Jena, p. 31-36. 10 fev. 2013.
TAHMASEBI, A. et al. Experimental study on microwave drying of Chinese and Indonesian low-rank
coals. Fuel Processing Technology, Anshan, p. 1821-1829. 30 jun. 2011.
CONSECANA. Manual de Instruções. Piracicaba: Consecana, 2006.
MAGALHÃES, A.M.; FERREIRA, M.D.; MORETTI, C.L.. Comparação entre dois métodos para avaliar a
eficácia de limpeza durante o beneficiamento de tomates. Engenharia Agrícola. Jaboticabal, p. 699-704. dez.
TORTORA, G.J.; FUNKE, B.R.; CASE, C.L.. Microbiology: an introduction. 3. ed. San Francisco: Prentice,
Okura, M.H.; Rende, J.C.; Microbiologia: Roteiro de aulas práticas. 1
th ed., Tecmedd: Ribeirão Preto, 2008.
WILLEY, J.M; SHERWOOD, L.M.; WOOLVERTON, C.J.. Microbiology. 7. ed. New York: Mcgraw-hill,
Callegari-Jacques, S.M.; Bioestatística: princípios e aplicações. 1
th ed., Artmed: Porto Alegre, 2003.
HAIR, J.F. et al. Análise multivariada de dados. 6.ed. Porto Alegre: Bookman, 2009. 688 p.
GERARD, K. A.; ROBERTS, J. S.. Microwave heating of apple mash to improve juice yield and quality. LWT
– Food Science and Technology, Geneva, p. 551-557. 17 dec. 2004.
BOTHA, G.E.; OLIVEIRA, J.C.; AHRNÉ, L.. Quality optimisation of combined osmotic dehydration and
microwave assisted air drying of pineapple using Constant power emission. Food and Bioproducts Processing,
Pretoria, p. 171-179. 09 Fev. 2011.
AIDER, M.; HALLEUX, D.. Passive and micowave-assisted thawing in maple sap cryoconcentration
technology. Journal of Food Engineering, Québec, p. 65-72. 08 Ago. 2007.
FAZAELI, M.; YOUSEFI, S.; EMAM-DJOMEH, Z.. Investigation on the effects of microwave and
conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry
juices. Food Research International, Tehran, p. 568-573. 16 Mar. 2011.
CAÑUMIR, J.A. et al. Pasteurisation of Apple Juice by Using Microwaves. LWT – Food Science and
Technology, Chillán, p. 389-392. 27 Ago. 2001.
MASKAN, M.. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods:
colour degradation and kinetics. Journal of Food Engineering, Gaziantep, p. 218-224. 24 Dec. 2004.
GHANEM, N. et al. Microwave dehydratin of three citrus peel cultivars: Effect on water and oil retention
capacities, color, shrinkage and total phenols content. Industrial Crops and Products, Sfax, p. 167-177. 06 Mar.
MASKAN, M.. Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food
Engineering, Gaziantep, p. 169-175. 11 Set. 2000.
GENTRY, T.S.; ROBERTS, J.S.. Design and evaluation of a continuous flow microwave pasteurization system
for apple cider. LWT – Food Science and Technology, Geneva, p. 227-238. 25 Mai. 2004.
TAJCHAKAVIT, S.; RAMASWAMY, H. S.; FUSTIER, P.. Enhanced destruction of spoilage microorganisms
in apple juice during continuous flow microwave heating. Food Research International, Quebec, p. 713-722. 06
Mar. 1999.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2017 Eclética Química Journal