Avaliação do efeito da irradiação micro-ondas no caldo de cana-de-açúcar como tratamento preliminar para produção de açúcar e etanol
Main Article Content
Abstract
O uso de tecnologias não térmicas de irradiação, tais como microondas, pode simplificar o processo de clarificação do caldo de cana-de-açúcar. Assim, o objetivo deste estudo foi purificar o caldo de cana de açúcar por radiação de microondas a fim de produzir açúcar e etanol. Os resultados foram submetidos à análise de variância (ANOVA) seguida pelo teste Tukey com nível de significância 0,05. Quanto ao material original e processado, foi analisado quanto a: turbidez, cor, sólidos solúveis totais (Brix) e pH, assim como microbiologicamente. Os resultados mostraram que o microondas nas condições testadas não promoveu a clarificação do caldo de cana de açúcar e, também, teve um aumento significativo em ° Brix.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
MELQUIADES, F.L. et al. Direct Determination of Sugar Cane Quality Parameters by X-ray Spectrometry and
Multivariate Analysis. Journal of Agricultural and Food Chemistry, Campinas, p. 10755-10761. 05 out. 2012.
ALKASRAWI, M.; JRAI, A. A.; AL-MUHTASEB, A. H.. Simultaneous saccharification and fermentation
process for ethanol production from steam-pretreated softwood: Recirculation of condensate streams. Chemical
Engineering Journal, Muscat, p. 574-579. 13 abr. 2013.
MORAES, B.S. et al. Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy,
environmental, and economic perspectives: Profit or expense?. Applied Energy, São Paulo, p. 825-835. 4 set.
SUN, X.; FUJIMOTO, S.; MINOWA, T.. A comparison of power generation and ethanol production using
sugarcane bagasse from the perspective of mitigating GHG emissions. Energy Policy, Hiroshima, p. 624-629. 5
mar. 2013.
NOGUEIRA, A.M.P.; VENTURINI FILHO, W.G.. Clarificação de Caldo de Cana por Micro e Ultrafiltração:
Comprovação de Viabilidade Técnica em Experimentos Preliminares. Brazilian Journal of Food Technology, p.
-62. 29 mar. 2007.
TEIXEIRA, E.F. et al. O uso de aparelhos de Micro-ondas domésticos em aulas experimentais de química
orgânica: Nitração de salicilaldeído. Química Nova, Rio de Janeiro, p. 1603-1606. 9 ago. 2010.
CAVICCHIOLI, A.; GUTZ, I.G.R.. O uso de radiação Ultravioleta para o pré-tratamento de amostras em análise
inorgânica. Química Nova, São Paulo, p. 913-921. 15 abr. 2003.
HANH-HÄNGERDAL, B. et al. Bio-ethanol – the fuel of tomorow from the residues of today. TRENDS in
Biotechnology, Lund, p. 549-556. 16 out. 2006.
WALTER, A. et al. Sustainability assessment of bio-ethanol production in Brazil considering land use change,
GHG emissions and socio-economic aspects. Energy Policy, Campinas, p. 5703-5716. 03 set. 2010.
BALAT, M.; BALAT, H.; ÖZ, C.. Progress in bioethanol processing. Progress in Energy and Combustion
Science, Trabzon, p. 551-573. 28 jan. 2008.
FURTADO, A.T.; SCANDIFFIO, M. I. G.; CORTEZ, L. A. B.. The Brazilian sugarcane innovation system.
Energy Policy, Campinas, p. 156-166. 15 out. 2010.
TRIANA, C.A.R.. Energetics of Brazilian ethanol: Comparison between assessment approaches. Energy
Policy, Bogotá, p. 4605-4613. 01 maio 2011.
GHORBANI, F. et al. Cane molasses fermentation for continuous ethanol production in an immobilized cells
reactor by Saccharomyces cerevisiae. Renewable Energy, Noor, p. 503-509. 14 ago. 2010.
GRAY, K. A.; ZHAO, L.; EMPTAGE, M.. Bioethanol. Current Opinion in Chemical Biology, San Diego, p.
-146. 7 mar. 2006.
SINGH, A.; BISHNOI, N.R.. Optimization of ethanol production from microwave alkali pretreated rice straw
using statistical experimental designs by Saccharomyces cerevisiae. Industrial Crops and Products, Haryana, p.
-341. 20 jan. 2012.
WOJTCZAK, M.; BIERNASIAK, J.; PAPIEWSKA, A.. Evaluation of microbiological purity of raw and
refined white cane sugar. Food Control, Lodz, p. 136-139. 12 out. 2011.
OLIVEIRA, A.C.G. et al. Efeitos do processamento térmico e da radiação gama na conservação de caldo de
cana puro e adicionado de suco de frutas. Ciência e Tecnologia de Alimentos, Piracicaba, p. 863-873. 05 ago.
ARAÚJO, F. A. D.. Processo de clarificação do caldo de cana pelo método da bicarbonatação. Ciência e
Tecnologia de Alimentos, dez. 2007.
PRATI, P.; MORETTI, R.H.. Study of clarification process of sugar cane juice for consumption. Ciência e
Tecnologia de Alimentos, São Pedro, p. 776-783. 25 set. 2009.
DOHERTY, W. O. S.. Improved Sugar Cane Juice Clarification by Understanding Calcium Oxide-PhosphateSucrose
Systems. Journal of Agricultural and Food Chemistry, Brisbane, p. 1829-1836. 15 fev. 2011.
JEGATHEESAN, V. et al. Performance of ceramic micro and ultrafiltration membranes treating limed and
partially clarified sugar cane juice. Journal of Membrane Science, Townsville, p. 69-77. 17 nov. 2008.
EGGLESTON, G.; GRISHAM, M.; ANTOINE, A.. Clarification Properties of Trash and Stalk Tissues from
Sugar Cane. Journal of Agricultural and Food Chemistry, New Orleans, p. 366-373. 12 ago. 2009.
JONES, D. A. et al. Microwave heating applications in environmental engineering —a review. Resources,
Conservation and Recycling, Nottingham, p. 75-90. 18 jun. 2001.
SOUZA, R.O.M. A.; MIRANDA, L.S.M.. Irradiação de Micro-Ondas Aplicada à Síntese Orgânica: Uma
História de Sucesso no Brasil. Química Nova, Rio de Janeiro, p. 497-506. 31 jan. 2011.
MENÉNDEZ, J.A.. Microwave heating processes involving carbon materials. Fuel Processing
Technology, Oviedo, p. 1-8. 28 ago. 2009.
APPELS, L. et al. Influence of microwave pre-treatment on sludge solubilization and pilot scale semicontinuous
anaerobic digestion.Bioresource Technology, Heverlee, p. 598-603. 10 nov. 2012.
DONG-LIANG, L. et al. In situ hydrate dissociation using microwave heating: Preliminary study. Energy
Conversion and Management, Guangzhou, p. 2207-2213. 21 mar. 2008.
ZIELINSKI, M. et al. Influence of microwave radiation on bacterial community structure in biofilm. Process
Biochemistry, Olsztyn, p. 1250-1253. 10 maio 2007.
ZIELINSKI, M.; ZIELINSKA, M.; DEBOWSKI, M.. Application of microwave radiation to biofilm heating
during wastewater treatment in trickling filters. Bioresource Technology, Olsztyn, p. 223-230. 5 out. 2012.
ESKICIOGLU, C. et al. Athermal microwave effects for enhancing digestibility of waste activated
sludge. Water Research, Ottawa, p. 2457-2466. 23 abr. 2007.
CHANDRASEKARAN, S.; RAMANATHAN, S.; BASAK, T.. Microwave food processing—A review. Food
Research International, Chennai, p. 243-261. 21 fev. 2013.
KRECH, T. et al. Microwave radiation as a tool for process intensification in exhaust gas treatment. Chemical
Engineering and Processing: Process Intensification, Jena, p. 31-36. 10 fev. 2013.
TAHMASEBI, A. et al. Experimental study on microwave drying of Chinese and Indonesian low-rank
coals. Fuel Processing Technology, Anshan, p. 1821-1829. 30 jun. 2011.
CONSECANA. Manual de Instruções. Piracicaba: Consecana, 2006.
MAGALHÃES, A.M.; FERREIRA, M.D.; MORETTI, C.L.. Comparação entre dois métodos para avaliar a
eficácia de limpeza durante o beneficiamento de tomates. Engenharia Agrícola. Jaboticabal, p. 699-704. dez.
TORTORA, G.J.; FUNKE, B.R.; CASE, C.L.. Microbiology: an introduction. 3. ed. San Francisco: Prentice,
Okura, M.H.; Rende, J.C.; Microbiologia: Roteiro de aulas práticas. 1
th ed., Tecmedd: Ribeirão Preto, 2008.
WILLEY, J.M; SHERWOOD, L.M.; WOOLVERTON, C.J.. Microbiology. 7. ed. New York: Mcgraw-hill,
Callegari-Jacques, S.M.; Bioestatística: princípios e aplicações. 1
th ed., Artmed: Porto Alegre, 2003.
HAIR, J.F. et al. Análise multivariada de dados. 6.ed. Porto Alegre: Bookman, 2009. 688 p.
GERARD, K. A.; ROBERTS, J. S.. Microwave heating of apple mash to improve juice yield and quality. LWT
– Food Science and Technology, Geneva, p. 551-557. 17 dec. 2004.
BOTHA, G.E.; OLIVEIRA, J.C.; AHRNÉ, L.. Quality optimisation of combined osmotic dehydration and
microwave assisted air drying of pineapple using Constant power emission. Food and Bioproducts Processing,
Pretoria, p. 171-179. 09 Fev. 2011.
AIDER, M.; HALLEUX, D.. Passive and micowave-assisted thawing in maple sap cryoconcentration
technology. Journal of Food Engineering, Québec, p. 65-72. 08 Ago. 2007.
FAZAELI, M.; YOUSEFI, S.; EMAM-DJOMEH, Z.. Investigation on the effects of microwave and
conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry
juices. Food Research International, Tehran, p. 568-573. 16 Mar. 2011.
CAÑUMIR, J.A. et al. Pasteurisation of Apple Juice by Using Microwaves. LWT – Food Science and
Technology, Chillán, p. 389-392. 27 Ago. 2001.
MASKAN, M.. Production of pomegranate (Punica granatum L.) juice concentrate by various heating methods:
colour degradation and kinetics. Journal of Food Engineering, Gaziantep, p. 218-224. 24 Dec. 2004.
GHANEM, N. et al. Microwave dehydratin of three citrus peel cultivars: Effect on water and oil retention
capacities, color, shrinkage and total phenols content. Industrial Crops and Products, Sfax, p. 167-177. 06 Mar.
MASKAN, M.. Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food
Engineering, Gaziantep, p. 169-175. 11 Set. 2000.
GENTRY, T.S.; ROBERTS, J.S.. Design and evaluation of a continuous flow microwave pasteurization system
for apple cider. LWT – Food Science and Technology, Geneva, p. 227-238. 25 Mai. 2004.
TAJCHAKAVIT, S.; RAMASWAMY, H. S.; FUSTIER, P.. Enhanced destruction of spoilage microorganisms
in apple juice during continuous flow microwave heating. Food Research International, Quebec, p. 713-722. 06
Mar. 1999.