Chiral separations of mandelic acid by HPLC using molecularly imprinted polymers
PDF

Keywords

molecular imprinting
technique
enantiomers
(±)-mandelic acid
chromatographic resolution

How to Cite

Hung, C.-Y., Huang, H.-H., & Hwang, C.-C. (2005). Chiral separations of mandelic acid by HPLC using molecularly imprinted polymers. Eclética Química, 30(4), 67–73. https://doi.org/10.26850/1678-4618eqj.v30.4.2005.p67-73

Abstract

Styrene is used in a variety of chemical industries. Environmental and occupational exposures
to styrene occur predominantly through inhalation. The major metabolite of styrene is present in two
enantiomeric forms, chiral R- and S- hydroxy-1-phenyl-acetic acid (R-and S-mandelic acid, MA). Thus, the
concentration of MA, particularly of its enantiomers, has been used in urine tests to determine whether
workers have been exposed to styrene.
This study describes a method of analyzing mandelic acid using molecular imprinting techniques and
HPLC detection to perform the separation of diastereoisomers of mandelic acid. The molecularly imprinted
polymer (MIP) was prepared by non-covalent molecular imprinting using (+) MA, (-) MA or (+)
phenylalanine, (-) phenylalanine as templates. Methacrylic acid (MAA) and ethylene glycol dimethacrylate
(EGDMA) were copolymerized in the presence of the template molecules. The bulk polymerization was
carried out at 4 o C under UV radiation. The resulting MIP was grounded into 25~441⁄4m particles, which
were slurry packed into analytical columns. After the template molecules were removed, the MIP-packed
columns were found to be effective for the chromatographic resolution of (±)-mandelic acid. This method
is simpler and more convenient than other chromatographic methods.
https://doi.org/10.26850/1678-4618eqj.v30.4.2005.p67-73
PDF

References

“Industrial Production Statistical Databank”,

Department of Statistics, Ministry of Economic Affairs,

Taiwan, 2003.

R. Barale, Mutat. Res. 257(1991) 107-126.

IARC, 60, International Agency for Research on

Cancer, Lyon.(1994).

H. Ohtsuji and M. Ohtsuji, Toxicol. Appl. Pharmacol.

(1971) 321-328.

S.J. Sumner and T.R. Fennell, Crit. Rev. Toxicol.

(1994) S11-S33.

L. Maestri, S. Ghittori and M. Imbriani, J. Chromatogr.

B. 687(1996) 387-394.

M.J. Prieto, D. Marhuenda and A. Cardona, J. Anal.

Toxicol. 26(1)(2002)23-28.

B.A. Ingelse, J.C. Reijenga and F.M. Everaerts, J.

Chromatogr. A. 772(1997)179-184.

P. Colin,G. Sirios and S. Chakrabarti, J. Chromatogr.,

Biomed. Appl. 337, (1986)243-251.

G. Truchon, J. Brodeur and M.Gerin, J.Anal. Toxicol.14

(1990)227-230

I. Linhart. Z. Weidenhoffer, J.Mraz, J. Smejkal,

I.Mladkova, Toxicology

Letters, 90(1997)199-205.

P. Manini, R. Andreoli, D. Poli,G.. De Palma, A. Mutti

and W.M. Niessen,Rapid Commun Mass Spectrom 16(24)

(2002)2239-2248.

A.G..Mayes, K.Mosbach, Trends in Anal.Chem. 16(6)

(1997) 321-332.

C.I.Lin, A.K.Joseph, C.K.Chang, Y.D.Lee, J.

Chromatogr A. 20 1027(1-2)

(2004)259-262.

P. Jandera, M. Skavrada, K. Klemmova, V. Backovska

and G..Guiochon, J Chromatogr A. 11 917(1-2) (2001)123-

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
68
Jan 2006Jul 2006Jan 2007Jul 2007Jan 2008Jul 2008Jan 2009Jul 2009Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20264.0
|