Sunflower oil methanolisys and glycerol ketalisation: stepwise production of biofuels and additives with 3-methylimidazolium hydrogensulphate as catalyst

Main Article Content

Sandro Luiz Barbosa dos Santos
Bruna Kaicy Barbosa
Camila de Lima
Alice Lopes Macedo
Jacqueline Nakau Mendonça
Giuliano Cesar Glososki
Norberto Peporine Lopes
Stanlei Ivair Klein

Abstract

The ionic liquid 3-methylimidazolium hydrogensulfate is soluble within the glycerol phase that it creates, after catalyzing the transesterification of sunflower oil to fatty acids methyl esters with methanol. Separation of this phase and addition of acetone allow the production of the 5-membered ketal 2,2-dimethyl-1,3-dioxylane-4-yl-methanol, in which the catalyst is insoluble and is removed by decantation. After drying under vacuum, the ionic liquid is ready to rerun to the two-stage cycle with no apparent loss of activity.

Metrics

Metrics Loading ...

Article Details

How to Cite
dos Santos, S. L. B., Barbosa, B. K., de Lima, C., Macedo, A. L., Mendonça, J. N., Glososki, G. C., Lopes, N. P., & Klein, S. I. (2016). Sunflower oil methanolisys and glycerol ketalisation: stepwise production of biofuels and additives with 3-methylimidazolium hydrogensulphate as catalyst. Eclética Química, 41(1), 54–59. https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p54-59
Section
Original articles

References

O.V. Sherstyuk, A.S. Ivanova, M.Y. Lebedev, M.V. Buckhtiyarova, L. G. Matvienko, A.A. Budneva, A.N. Simonov, V.A. Yakovlev, Transesterification of rapeseed oil under flow conditions catalyzed by basic solids: M Al(La) O (M = Sr, Ba), M Mg O (M = Y, La), Appl. Catal. A, 2012, 419-420, 73-83.

A. Witsuthammakul, T. Sooknoi, Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system, Appl. Catal. A, 2012, 413-414, 109-116.

Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2, Appl. Catal. A, 2012, 433-434, 128-134.

N. Hamzah, N.M. Nordin, A.H.A. Nadzri, Y.A. Nik, M.B. Kassim, M.A. Yarmo, Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media, Appl. Catal. A, 2012, 419-420, 133-141.

A. Ulgen, W.F. Hoelderich, Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts, Appl. Catal. A, 2011, 400, 34-38.

J.H. Park, J.S. Choi, S.K. Woo, S.D. Lee, M. Cheong, H.S. Kim, H. Lee, Isolation and characterization of intermediate catalytic species in the Zn-catalyzed glycerolysis of urea, Appl. Catal. A, 2012, 433-434, 35-40.

M. Di Serio, L. Casale, R. Tesser, E. Santacesaria, New process for the production of glycerol terc-butyl ethers, Energy Fuels, 2010, 24, 4668-4672.

C.J.A. Mota, C.X.A. da Silva, V.L.C. Gonçalves, Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel, Quim. Nova, 2009, 32, 639-648.

P.H.R. Silva, V.L.C. Gonçalves, C.J.A. Mota, Glycerol acetals as anti-freezing additives for biodiesel, Bioresour. Technol., 2010, 101, 6225-6229.

C.N. Fan, C.H. Xu, C.Q. Liu, Z.Y. Huang, J.Y. Liu, Z.X. Ye, Catalytic acetalization of biomass glycerol with acetone over TiO2–SiO2 mixed oxides, Reac. Kinet. Mech. Cat., 2012, 107, 189-202.

H. Olivier-Bourbigou, L Magna, D. Morgan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A, 2010, 373, 1-56.

T.L. Greaves, C.J. Drummond, Protic Ionic Liquids: Properties and Applications, Chem. Rev., 2008, 108, 206-237.

J. Bender, D. Jepkens, H. Hüsken, Ionic Liquids as Phase-Transfer Catalysts: Etherification Reaction of 1-Octanol with 1-Chlorobutane, Organic Process Research Development, 2010, 14, 716-721.

M.P. Dorado, E. Ballesteros, F.J. Lopez, M. Mittelbch, Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production, Energy Fuel, 2004, 18, 77-83.