Sunflower oil methanolisys and glycerol ketalisation: stepwise production of biofuels and additives with 3-methylimidazolium hydrogensulphate as catalyst
Volume 41, 1, 2016, Eclética Química Journal
PDF
EPUB

Keywords

sunflower oil
transesterification
ketal production
glycerol
ionic liquid
biodiesel additive

How to Cite

dos Santos, S. L. B., Barbosa, B. K., de Lima, C., Macedo, A. L., Mendonça, J. N., Glososki, G. C., Lopes, N. P., & Klein, S. I. (2016). Sunflower oil methanolisys and glycerol ketalisation: stepwise production of biofuels and additives with 3-methylimidazolium hydrogensulphate as catalyst. Eclética Química, 41(1), 54–59. https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p54-59

Abstract

The ionic liquid 3-methylimidazolium hydrogensulfate is soluble within the glycerol phase that it creates, after catalyzing the transesterification of sunflower oil to fatty acids methyl esters with methanol. Separation of this phase and addition of acetone allow the production of the 5-membered ketal 2,2-dimethyl-1,3-dioxylane-4-yl-methanol, in which the catalyst is insoluble and is removed by decantation. After drying under vacuum, the ionic liquid is ready to rerun to the two-stage cycle with no apparent loss of activity.

https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p54-59
PDF
EPUB

References

O.V. Sherstyuk, A.S. Ivanova, M.Y. Lebedev, M.V. Buckhtiyarova, L. G. Matvienko, A.A. Budneva, A.N. Simonov, V.A. Yakovlev, Transesterification of rapeseed oil under flow conditions catalyzed by basic solids: M Al(La) O (M = Sr, Ba), M Mg O (M = Y, La), Appl. Catal. A, 2012, 419-420, 73-83.

A. Witsuthammakul, T. Sooknoi, Direct conversion of glycerol to acrylic acid via integrated dehydration–oxidation bed system, Appl. Catal. A, 2012, 413-414, 109-116.

Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige, Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2, Appl. Catal. A, 2012, 433-434, 128-134.

N. Hamzah, N.M. Nordin, A.H.A. Nadzri, Y.A. Nik, M.B. Kassim, M.A. Yarmo, Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media, Appl. Catal. A, 2012, 419-420, 133-141.

A. Ulgen, W.F. Hoelderich, Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts, Appl. Catal. A, 2011, 400, 34-38.

J.H. Park, J.S. Choi, S.K. Woo, S.D. Lee, M. Cheong, H.S. Kim, H. Lee, Isolation and characterization of intermediate catalytic species in the Zn-catalyzed glycerolysis of urea, Appl. Catal. A, 2012, 433-434, 35-40.

M. Di Serio, L. Casale, R. Tesser, E. Santacesaria, New process for the production of glycerol terc-butyl ethers, Energy Fuels, 2010, 24, 4668-4672.

C.J.A. Mota, C.X.A. da Silva, V.L.C. Gonçalves, Gliceroquímica: novos produtos e processos a partir da glicerina de produção de biodiesel, Quim. Nova, 2009, 32, 639-648.

P.H.R. Silva, V.L.C. Gonçalves, C.J.A. Mota, Glycerol acetals as anti-freezing additives for biodiesel, Bioresour. Technol., 2010, 101, 6225-6229.

C.N. Fan, C.H. Xu, C.Q. Liu, Z.Y. Huang, J.Y. Liu, Z.X. Ye, Catalytic acetalization of biomass glycerol with acetone over TiO2–SiO2 mixed oxides, Reac. Kinet. Mech. Cat., 2012, 107, 189-202.

H. Olivier-Bourbigou, L Magna, D. Morgan, Ionic liquids and catalysis: Recent progress from knowledge to applications, Appl. Catal. A, 2010, 373, 1-56.

T.L. Greaves, C.J. Drummond, Protic Ionic Liquids: Properties and Applications, Chem. Rev., 2008, 108, 206-237.

J. Bender, D. Jepkens, H. Hüsken, Ionic Liquids as Phase-Transfer Catalysts: Etherification Reaction of 1-Octanol with 1-Chlorobutane, Organic Process Research Development, 2010, 14, 716-721.

M.P. Dorado, E. Ballesteros, F.J. Lopez, M. Mittelbch, Optimization of Alkali-Catalyzed Transesterification of Brassica Carinata Oil for Biodiesel Production, Energy Fuel, 2004, 18, 77-83.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Eclética Química Journal

Metrics

Metrics Loading ...