A comparative study of Schiff base chelating resins: synthesis, uptake of heavy metal ions, and thermal studies

Main Article Content

Fatma A. Al-Yusufy
Mohammed Q. Al-Qadasy
Yasmin M. S. Jamil
Hussein M. Al-Maydama
Moathe M. Akeel

Abstract

Two new chelating resins (Rciaa91 and Rciaa73) with different compositional chelating groups and degree of cross-linking were prepared by free radical copolymerization of Schiff bases obtained from condensation reaction of cinnamaldehyde (ci) with anthranilic acid (aa) and 1,4-phenylenediamine (pn) monomers. The synthesized materials were characterized using CHN analyses, FTIR, 1H-NMR, and thermal analyses (TGA, DTA). Batch technique was applied, and the contact time, pH and initial concentration of the metal ions were investigated as factors affecting the uptake behavior. The results obtained indicated that the chelating resin with larger compositional ratio of chelating moieties and lower degree of cross-linking showed lower optimum reaction time and higher uptake affinity towards the metal ions Cu(II), Cd(II), Co(II), Zn(II), Hg(II), and Pb(II), under the same conditions. Both the chelating resins showed uptake behavior of the metal ions in the following order Hg2+ > Cu2+ > Zn2+>Pb2+>Co2+ > Cd2+ each metal at its optimum pH and at the same reaction time and ion concentration. The thermal degradation behavior and stability of the resins were investigated by using non-isothermal thermogravimetric analysis (TGA/DTG/DTA), at 10 °C min-1 heating rate and under nitrogen. The Coats-Redfern method was used to evaluate the kinetic and thermodynamic parameters (ΔG*, ΔH* and ΔS*) for the prominent degradation steps in the TGA curves at 450-660 °C range.

Metrics

Metrics Loading ...

Article Details

How to Cite
Al-Yusufy, F. A., Al-Qadasy, M. Q., Jamil, Y. M. S., Al-Maydama, H. M., & Akeel, M. M. (2018). A comparative study of Schiff base chelating resins: synthesis, uptake of heavy metal ions, and thermal studies. Eclética Química, 43(2), 10–22. https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p10-22
Section
Original articles

References

Shah, B. A., Shah, A.V., Shah, P.M., Analytical and Morphology Studies of Phthalic acid-Formaldehyde Resorcinol as Chelating Resin, Malaysian Polymer Journal (MPJ) 4 (2) (2009) 1-12.

Cavaco, S. A., Fernandes, S., Augusto, C. M., Quina, M. J., Gando-Ferreira, L. M., Evaluation of chelating ion-exchange resins for separating Cr(III) from industrial effluents, J. Hazard. Mater. 169 (2009) 516-523. https://doi.org/10.1016/j.jhazmat.2009.03.129.

Dikshit, D., Polymorphisms in DNA Sequence and Personalized Alternative Herbal Drugs, Orient Journal of Chemistry (OJC) 29 (1) (2013) 305-307.

Hassan, R., Arida, H., Montasser, M., Abdel Latif N., Synthesis of New Schiff Base from Natural Products for Remediation of Water Pollution with Heavy Metals in Industrial Areas, J. Chem. 2013 (2013) 1-10. https://doi.org/10.1155/2013/240568.

Cheng-Chien W., Chun-Chih W., Synthesis and characterization of chelating resins with amino moieties and application on removal of copper(II) from EDTA complexes, J. Appl. Polym. Sci. 97 (2005) 2457-2468. https://doi.org/10.1002/app.22019.

Shareef, B.A., Waheed, I. F., Jalaot, K. K., Preparation and Analytical Properties of 4-Hydroxybenzaldehyde, Biuret and Formaldehyde Terpolymer Resin, Orient Journal of Chemistry (OJC) 29 (4) (2013) 1391-1397. https://doi.org/10.13005/ojc/290414.

Al-Yusufy, F. A., Othman, M. K., Al-Qadri, F. A., Synthesis and Metal Ion Uptake Studies of Formaldehyde and Furfuraldehyde–Condensed Phenol-Schiff Base Chelating Resins, Sana’a Univ. J. Sci. & Technol., 2 (1) (2005) A(9-19).

Monier, M., Abdel-Latif, D. A., El-Reash, Y. A., Ion-imprinted modified chitosan resin for selective removal of Pd(II) ions, J. Colloid Interface Sci. 469 (2016) 344-354. https://doi.org/10.1016/j.jcis.2016.01.074.

Urbano, B. F., Rivas, B. L., Sorption properties of chelating polymer–clay nano‐composite resin based on iminodiacetic acid and montmorillonite: water absorbency, metal ion uptake, selectivity, and kinetics, J. Chem. Technol. Biotechnol. 89 (2) (2014) 249-258. https://doi.org/10.1002/jctb.4109.

Veliscek-Carolan, J., Separation of actinides from spent nuclear fuel: A review, J. Hazard. Mater. 318 (2016) 266-281. https://doi.org/10.1016/j.jhazmat.2016.07.027.

Ling, C., Liu, F. Q., Xu, C., Chen, T. P., Li, A. M., An Integrative Technique Based on Synergistic Coremoval and Sequential Recovery of Copper and Tetracycline with Dual-Functional Chelating resin: Roles of Amine and Carboxyl Groups, ACS Appl. Mater. Interfaces 5 (22) (2013) 11808-11817. https://doi.org/10.1021/am403491b.

Laaksonen, T., Heikkinen, S., Wähälä, K., Synthesis of Tertiary and Quaternary Amine Derivatives from Wood Resin as Chiral NMR Solvating Agents, Molecules 20 (2015) 20873-20886. https://doi.org/10.3390/molecules201119732.

Monier, M., Adsorption of Hg2+, Cu2+ and Zn2+ ions from aqueous solution using formaldehyde cross-linked modified chitosan–thioglyceraldehyde Schiff's base, Int. J. Biol. Macromol. 50 (3) (2012) 773-781. https://doi.org/10.1016/j.ijbiomac.2011.11.026.

Donia, A. M., Atia, A. A., Elwakeel, K. Z., Selective separation of mercury(II) using magnetic chitosan resin modified with Schiff's base derived from thiourea and glutaraldehyde, J. Hazard. Mater. 151 (2-3) (2008) 372-379. https://doi.org/10.1016/j.jhazmat.2007.05.083.

Yang, W., Zheng, F., Xue, X., Lu, Y., Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents, J. Colloid Interface Sci. 362 (2) (2011) 503-509. https://doi.org/10.1016/j.jcis.2011.06.071.

El-Reash, Y.A., Otto, M., Kenawy, I.M., Ouf, A.M., Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin, Int. J. Biol. Macromol. 49 (4) (2011) 513-522. https://doi.org/10.1016/j.ijbiomac.2011.06.001.

Othman, M. K., Al-Qadri, F. A., Al-Yusufy, F. A., Synthesis, physical studies and uptake behavior of: Copper(II) and lead(II) by Schiff base chelating resins, Spectrochim. Acta A Mol. Biomol. Spectrosc. 78 (5) (2011) 1342-1348. https://doi.org/10.1016/j.saa.2010.12.073.

Oo, C. W., Osman, H., Fatinathan, S., Md. Zin, M. A., The Uptake of Copper(II) Ions by Chelating Schiff Base Derived from 4-Aminoantipyrine and 2-Methoxybenzaldehyde, International Journal of Nonferrous Metallurgy (IJNM) 2 (2013) 1-9. https://doi.org/10.4236/ijnm.2013.21001.

M. Singanan, Biosorption of Hg(II) ions from synthetic wastewater using a novel biocarbon technology, Evinron. Eng. Res. 20 (1) (2015) 33-39. https://doi.org/10.4491/eer.2014.032.

Hamzaa, M. F., Abdel-Monemb, Y. K., Faragc, N. M., El-Tanbouly, A. M., Studies on the Recovery of Cu (II) and U (VI) on Highly Adsorptive Modified Magnetic Amine Resins from Dolostone Leachate Solution, International Journal of Sciences: Basic and Applied Research (IJSBAR), 30 (1) (2016) 149-166.

Daşbaş, T., Saçmac, Ş., Şahan, S., Kartal, Ş., Ülgen, A., Synthesis, characterization and application of a new chelating resin for on-line separation, preconcentration and determination of Ag(I) by flame atomic absorption spectrometry, Talanta 103 (2013) 1-7. https://doi.org/10.1016/j.talanta.2012.09.017.

Haron, M. J., Yunus, W. M. Z., Removal of fluoride ion from aqueous solution by a cerium-poly (hydroxamic acid) resin complex, J. Environ. Sci. Health. A. 36 (2001) 727-734. https://doi.org/10.1081/ESE-100103756.

El-Hamshary, H., El-Newehy, M. H., Al-Deyab, S. S., Oxidation of phenol by hydrogen peroxide catalyzed by metal-containing poly (amidoxime) grafted starch, Molecules 16 (2011) 9900-9911. https://doi.org/10.3390/molecules16129900.

Dragan, E.S., Apopei Loghin, D. F., Cocarta, A. I., Efficient Sorption of Cu2+ by Composite Chelating Sorbents Based on Potato Starch-graft-Polyamidoxime Embedded in Chitosan Beads, ACS Appl. Mater. Interfaces 6 (19) (2014) 16577-16592. https://doi.org/10.1021/am504480q.

Hazer, O., Kartal, S., Synthesis of a novel chelating resin for the separation and preconcentration of uranium (VI) and its spectrophotometric determination, Anal. Sci. 25 (2009) 547-551. https://doi.org/10.2116/analsci.25.547.

Othman, M. K., Ph. D. Thesis, Preparation and Thermal Behavior Studies of Some New Polymers and Their Uses in Metal Complexes and Heavy Metal ions Removal from Aqueous Solutions, Zagazig University, Benha Branch, Faculty of Science, Chemistry Department, 2003.

West, T. S., Complexometry with EDTA and Related Reagents, BDH Chemicals Ltd, 3rd ed., 1969.

Peters, D. G., Hayes, J. M., Hieftje, G. M., Chemical Separations and Measurements Theory and Practice of Analytical Chemistry, Saunders Company, 3rd ed., 1974.

El-Sayed, G. O., Dessouki, H. A., Ibrahiem, S. S., Removal of Zn(II), Cd(II) and Mn(II) from aqueous solutions by adsorption on maize stalks, Malaysian Journal of Analytical Sciences (MJAS) 15(1) (2011) 8–21.

Silverstein, R. M., Bassler, G. C., Morril, T. C., Spectroscopic Identification of Organic Compounds, John Wiley, New York, (1981).

Bhatt, R. R., Shah, B. A., Shah, A. V., Uptake of heavy metal ions by chelating ion-exchange resin derived from p-hydroxibenzoic acid-formaldehyderesorcinol:synthesis, characterization and sorptiondynamics, The Malaysian Journal of Analytical Sciences (MJAS) 16 (2) (2012) 117-133.

Naiya, T. K., Bhattacharya, A. K., Das, S. K., Adsorptive removal of Cd(II) ions from aqueous solutions by rice husk ash, Environ. Prog. Sustain. Energy 28 (4) (2009) 535–546. https://doi.org/10.1002/ep.10346.

Cotton, F. A., Wilkinson, G., Advanced Inorganic Chemistry; A Comprehensive Text, John Wiley & Sons, New York, 3rd ed.,1972.

Malakul, P., Srinivasan, K., Wang, Y. H., Metal Adsorption and Desorption Characteristics of Surfactant-Modified Clay Complexes, Ind. Eng. Chem. Res. 37(11) (1998) 4296-4301. https://doi.org/10.1021/ie980057i.

Lezzi, A., Cobianco, S., Roggero, A., Synthesis of thiol chelating resins and their adsorption properties toward heavy metals ions, J. Polym. Sci., Part A 32 (10) (1994)1877-1883. https://doi.org/10.1002/pola.1994.080321008.

Coats, A. W., Redfern, J. P., Kinetic Parameters from Thermogravimetric Data, Nature 201 (1964) 68-69.

Horowitz, H. H., Metzger, G., A New Analysis of Thermogravimetric Traces, Anal. Chem. 35 (10) (1963)1464-1468. https://doi.org/10.1021/ac60203a013.