Seleção de variáveis para categorização de amostras químicas

Main Article Content

Michel José Anzanello

Abstract

This paper presents a method to select the best variables to categorize chemical samples into two classes, say conforming or non-conforming. For that matter, PLS regression is combined with a data mining tool, the k-Nearest Neighbor classification technique, through an iterative variable selection process. The recommended subset of variables is chosen based on several criteria: sensitivity, specificity and percent of retained variables. When applied to two datasets related to wine analysis and one associated to QSAR, the proposed method significantly reduced the number of variables required for classification, while yielding superior categorization performance when compared to using all original variables.

Metrics

Metrics Loading ...

Article Details

How to Cite
Anzanello, M. J. (2014). Seleção de variáveis para categorização de amostras químicas. Eclética Química, 36(4), 28–33. https://doi.org/10.26850/1678-4618eqj.v36.4.2011.p28-33
Section
Original articles