Estimation of nitrogen dioxide levels on streets from Fortaleza Brazil using passive sampling and multivariate analysis

Main Article Content

Francisco Wagner de Sousa
Maxwell Lima Maia
Wendy Fernandes Lavigne Quintanilha
Demostenis Ramos Cassiano
Bruno Vieira Bertoncini
Ronaldo Ferreira Nascimento
Cleidiane Silva Oliveira
Jefferson Pereira Ribeiro

Abstract

The increase in the fleet of motor vehicles circulating in urban centers is one of the main generators of gaseous pollutants harmful to human health and the environment. Pollutants can be economically and effectively monitored through passive sampling. This study aims to estimate NO2 levels on roads of Fortaleza city /CE using the passive sampling method. 12 campaigns covered the rainy (March-June) and the dry (July-November) seasons in 2019. The seasonal averages of NO2 in the rainy season were higher than the dry one, and Almirante Rubim Street showed the greatest difference in the averages: 26.6 µg m-3 in the rainy and 19.3 µg m-3 in the dry season. The principal component analysis applied to the averages of NO2 concentration in the rainy and dry seasons, vehicle traffic and Height of the road/width ratio indicated that components 1, 2 and 3 explain 94.4% of the studied cases. Passive sampling proved to be efficient, contributing to the production of unpublished data about NO2 levels in streets of Fortaleza/Ceará/Brazil from mobile sources.

Metrics

Metrics Loading ...

Article Details

How to Cite
de Sousa, F. W., Maia, M. L., Quintanilha, W. F. L., Cassiano, D. R., Bertoncini, B. V., Nascimento, R. F., Oliveira, C. S., & Ribeiro, J. P. (2024). Estimation of nitrogen dioxide levels on streets from Fortaleza Brazil using passive sampling and multivariate analysis. Eclética Química, 49, e–1505. https://doi.org/10.26850/1678-4618.eq.v49.2024.e1505
Section
Original articles

References

Aguiar, L. F. M. C.; Silva, M. V. C.; Gandu, A. W.; Rocha, C. A.; Cavalcante, R. M. Caracterização de Cânions Urbanos e seus Efeitos Climáticos em Área com Intenso Processo de Verticalização na Cidade de Fortaleza, Ceará. Revista Brasileira de Geografia Física. 2017, 10 (4), 1046–1058. https://doi.org/10.26848/rbgf.v10.4.p1046-1058

Aránguez, E.; Ordóñes, J. M.; Serrano, J.; Aragonés, N.; Fernández-Partier, R.; Gandarillas, A.; Galán, I. Contaminantes Atmosféricos y su Vigilancia. Revista Española de Salud Pública. 1999, 73 (2), 123–132. https://doi.org/10.1590/S1135-57271999000200003

Arbex, M. A.; Santos, U. P.; Martins, L. C., Saldiva, P. H. N.; Pereira, L. A. A.; Braga, A. L. F. Air pollution and the respiratory system. Jornal Brasileiro de Pneumologia. 2012, 38 (5), 643–655. https://doi.org/10.1590/S1806-37132012000500015

Azevedo, B. B.; Anzanello, M. J. Agrupamento de trabalhadores com perfis semelhantes de aprendizado apoiado em Análise de Componentes Principais. Gestão & Produção. 2015, 22 (1), 35–52. https://doi.org/10.1590/0104-530X1094

Baird, C.; Cann, M. Química Ambiental; Bookman, 2011.

Bari, A.; Curran, R. L. T.; Kindzierski, W. B. Field performance evaluation of Maxxam passive samplers for regional monitoring of ambient SO2, NO2 and O3 concentrations in Alberta, Canada. Atmospheric Environment. 2015, 114, 39–47. https://doi.org/10.1016/j.atmosenv.2015.05.031

Bender, A. P.; Dziedzic, M. Dispersão de poluentes nos eixos estruturais em Curitiba (PR), Brasil. Engenharia Sanitária e Ambiental. 2014, 19 (spe), 31–42. https://doi.org/10.1590/S1413-41522014019010000364

Biswal, A.; Singh, T.; Singh, V.; Ravindra, K.; Mor, S. COVID–19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data. Helion. 2020, 6 (9), E04764. https://doi.org/10.1016/j.heliyon.2020.e04764

Bozkurt, Z.; Üzmez, Ö. Ö.; Döğeroğlu, T.; Artun, G.; Gaga, E. O. Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: Sources, spatial and seasonal variations and health risk estimation. Atmospheric Pollution Research. 2018, 9 (6), 1146–1156. https://doi.org/10.1016/j.apr.2018.05.001

Campos, V.; Passos, L.; Godoi, R. H. M.; Godoi, A. F. L.; Tavares, T. M. Development and validation of passive samplers for atmospheric monitoring of SO2, NO2, O3 and H2S in tropical áreas. Microchemical Journal. 2010, 96 (1), 132–138. https://doi.org/10.1016/j.microc.2010.02.015

Carslaw, D. C.; Murrells, T. P.; Anderssonc, J.; Keenanc, M. Have vehicle emissions of primary NO2 peaked? Faraday Discussions. 2016, 189, 439–454. https://doi.org/10.1039/C5FD00162E

Conselho Nacional do Meio Ambiente (CONAMA). Resolução nº 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar; Ministério do Meio Ambiente, 2018. https://www.in.gov.br/web/guest/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895/do1-2018-11-21-resolucao-n-491-de-19-de-novembro-de-2018-51058603 (accessed 2018-12-08).

Cruz, L. P. S.; Campos, V. Métodos de amostragem e análise para compostos reduzidos de enxofre atmosférico. Química Nova. 2008, 31 (5), 1180–1189. https://doi.org/10.1590/S0100-40422008000500047

Datasus. Ministério da Saúde. Sistema de Informações sobre Internações Causadas por Doenças no Sistema Respiratório; Datasus, 2019. http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def (accessed 2019-11-17).

Ding, J.; Ronald van der A.; Mijling, B.; Laat, J.; Eskes, H.; Boersma, K. F. NOx emissions in India derived from OMI satellite observations. Atmospheric Environment: X. 2022, 14, 100174. https://doi.org/10.1016/j.aeaoa.2022.100174

Dita, P. A.; Dias. J. W. C. Método do Arsenito de Sódio para a Determinação de Dióxido de Nitrogênio na Atmosfera; Energética, 2016.

Drumm, F. C.; Gerhardt, A. E.; Fernandes, G. D.; Chagas, P.; Sucolotti, M. S.; Kemerich, P. D. C. Air Pollution from the Burning of Fuels Derived from Petroleum in Motor Vehicles. Revista Eletronica em Gestão, Educação e Tecnologia Ambiental. 2013, 18 (1), 66–78. https://doi.org/10.5902/2236117010537

Duan, Y.; Liao, Y.; Li, H.; Yan, S.; Zhao, Z.; Yu, S.; Fu, Y.; Wang, Z.; Yin, P.; Cheng, J.; Jiang, H. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Science of the Total Environment. 2019, 697, 134051. https://doi.org/10.1016/j.scitotenv.2019.134051

European Environment Agency (EEA). The European Union (EU) has developed an extensive body of legislation which establishes standards and objectives for a number of pollutants in air; EEA, 2018 (Last updated on 2023-11-23). https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards (accessed 2018-04-07).

United States Environmental Protection Agency (EPA). NAAQS Table; EPA, 2018 (Last updated on 2024-02-07). https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed 2018-04-07).

Ferreira, M. M. C. Quimiometria: Conceitos. Métodos e Aplicações; Editora Unicamp, 2015. https://doi.org/10.7476/9788526814714

Freedman, B. The Ecological Effects of Pollution, Disturbance and Other Stresses. In Environmental Ecology; Academic Press, 1995.

Gasmi, K.; Aljalal, A.; Al-Basheer, W.; Abdulahi, M. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Climate. 2017, 21, 232–242. https://doi.org/10.1016/j.uclim.2017.07.002

Ghosh, S.; Dubey, S. K. Comparative Analysis of K-Means and Fuzzy CMeans Algorithms. International Journal of Advanced Computer Science and Applications. 2013, 4 (4), 35–39. https://doi.org/10.14569/IJACSA.2013.040406

Ghozilaki, M. G.; Heibati, B.; Naddafi, K.; Kloog, I.; Conti, G. O.; Polosa, R.; Ferrante, M. Evaluation of Chronic Obstructive Pulmonary Disease (COPD) attributed to atmospheric O3, NO2, and SO2 using Air Q Model (2011–2012 year). Environmental Research. 2016, 144 (A), 99–105. https://doi.org/10.1016/j.envres.2015.10.030

Grundström, M.; Pleijel, H. Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic Route. Environmental Pollution. 2014, 189, 73–76. https://doi.org/10.1016/j.envpol.2014.02.026

Guo, P.; Miao, H.; Chen, Y.; Fu, Y.; Zhao, Q.; Li, B. Maternal exposure to gaseous ambient air pollutants increases the risk of preterm birth in the Pearl River Delta, China 2014–2017. Science of The Total Environment. 2019, 671, 959–970. https://doi.org/10.1016/j.scitotenv.2019.03.375

Halim, N. D. A.; Latif, M. T.; Ahamad, F; Dominick, D.; Chung, J. X.; Juneng, L.; Khan, F. The long-term assessment of air quality on an island in Malaysia. Helion, 2018, 4 (12), e01054. https://doi.org/10.1016/j.heliyon.2018.e01054

Hammer, Ø.; Harper, D. A. T.; Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001, 4 (1), 9.

Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research. 2011, 11 (2), 128–139. https://doi.org/10.4209/aaqr.2010.07.0055

Harner, T.; Su, K.; Genualdi, S.; Karpowicz, J.; Ahrens, L.; Mihele, C.; Schuster, J.; Charland, J. P.; Narayan, J. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment. 2013, 75, 123–128. https://doi.org/10.1016/j.atmosenv.2013.04.012.

Hatzopoulou, M.; Weichenthal, S.; Dugum, H.; Pickett, G.; Miranda-Moreno, L.; Kulka, R.; Andersen, R.; Goldberg, M. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology. 2013, 23, 46–51. https://doi.org/10.1038/jes.2012.85

Hauser, C. D.; Buckey, A.; Porter, J. Passive samplers and community science in regional air quality measurement, education and communication. Environmental Pollution. 2015, 203, 243–249. https://doi.org/10.1016/j.envpol.2014.12.028

Hien, P. D.; Hangartner, M.; Fabian, S.; Tan, P. M. Concentrations of NO2, SO2, and benzene across Hanoi measured by passive diffusion samplers. Atmospheric Environment. 2014, 88, 66–73. https://doi.org/10.1016/j.atmosenv.2014.01.036

Honda, K.; Notsu, A.; Ichihashi, H. Fuzzy PCA-Guided Robust k-Means Clustering. IEEE Transactions on Fuzzy Systems. 2010, 18 (1), 67–79. https://doi.org/10.1109/TFUZZ.2009.2036603

Hongyu, K.; Sandanielo, V. L. M.; Oliveira Junior, G. J. Análise de Componentes Principais: Resumo Teórico, Aplicação e Interpretação. Engineering and Science. 2016, 5 (1), 83–90. https://doi.org/10.18607/ES201653398

Instituto Nacional de Meteorologia (INMET). Banco de dados meteorológicos (BDMEP); INMET, 2019. https://bdmep.inmet.gov.br/ (accessed 2019-11-07).

Instituto Brasileiro de Geografia e Estatistica (IBGE). Frota de Veículos; IBGE, 2019. https://cidades.ibge.gov.br/brasil/ce/fortaleza/pesquisa/22/28120 (accessed 2019-11-03).

Januševičius, T.; Grubliauskas, R. The effect of speed bumps and humps on the concentrations of CO, NO and NO2 in ambient air. Air Quality, Atmosphere & Health. 2019, 12, 635–642. https://doi.org/10.1007/s11869-019-00683-y

Kamińska, J. A. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Science of the Total Environment. 2019, 651 (1), 475–483. https://doi.org/10.1016/j.scitotenv.2018.09.196

Karamizadeh, S.; Abdullah, S. M.; Manaf, A. A.; Zamani, M.; Hooman, A. An Overview of Principal Component Analysis. Journal of Signal and Information Processing. 2013, 4 (3B), 173–175. https://doi.org/10.4236/jsip.2013.43B031

Lacava, C. I. V.; Alvares Junior, O. M.; Fernandes, P. S. Emissões Atmosféricas; SENAI, 2002.

Lenzi, E.; Favero, L. O. B. Introdução à Química da Atmosfera: Ciência. Vida e Sobrevivência; LTC, 2014.

Lisboa, H.; Kawano, M. Monitoramento de poluentes atmosféricos. Controle da Poluição Atmosférica; ENS-UFSC, 2010.

Lodge, J. P. Methods of Air Sampling and Analysis; Lewis Publishers, 1988.

Lyra, W. S.; Silva, E. C.; Araújo, M. C. U.; Fragoso, W. D. Classificação Periódica: Um Exemplo Didático Para Ensinar Análise de Componentes Principais. Química Nova. 2010. 33 (7), 1594–1597. https://doi.org/10.1590/S0100-40422010000700030

Maia, K. P.; Silva, G. A.; Libânio, M. Aplicação de análise multivariada no estudo da frequência de amostragem e do número de estações de monitoramento de qualidade da água. Engenharia Sanitária e Ambiental. 2019, 24 (5), 1013–1025. https://doi.org/10.1590/S1413-41522019175743

Martins, L. C.; Latorre, M. R. D. O.; Cardoso, M. R. A.; Gonçanves, F. L. T.; Saldiva, P. H. N.; Braga, A. L. F. Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Revista de Saúde Pública. 2002, 36 (1), 88–94. https://doi.org/10.1590/S0034-89102002000100014

Masey, N.; Gillespie, J.; Heal, M. R.; Hamilton, S.; Beverland. I. J. Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers. Atmospheric Environment. 2017, 160, 70–76. https://doi.org/10.1016/j.atmosenv.2017.04.008

Mehta, N. S.; Dey, S. Automobile pollution control using catalysis. Resources, Environment and Sustainability. 2020, 2, 100006. https://doi.org/10.1016/j.resenv.2020.100006

Miranda, D. C.; Ferreira, G. C.; Barbosa, L. D.; Pereira, N. L. A.; Ribeiro, T. C.; Maloncy, M. L.; Batista, M. S. Análise dos Poluentes Atmosféricos NO2 E O3 Via Amostradores Passivos de Baixo Custo. E-Xacta. 2017, 10 (1), 29–35. https://doi.org/10.18674/exacta.v10i1.1960

Monte, E. Z.; Albuquerque, T. T. A.; Reisen, V. A. Impactos das Variáveis Meteorológicas na Qualidade do Ar da Região da Grande Vitória, Espírito Santo, Brasil. Revista Brasileira de Meteorologia. 2016, 31 (4 suppl 1), 546–554. https://doi.org/10.1590/0102-7786312314b20150100

Moori, R. G.; Marcondes, R. C.; Ávila, R. T. A Análise de Agrupamentos como Instrumento de Apoio à Melhoria da Qualidade dos Serviços aos Clientes. Revista de Administração Contemporânea. 2002, 6 (1), 63–84. https://doi.org/10.1590/S1415-65552002000100005

Moura, I. S. M.; Santos, D. F.; Pinheiro, F. G. M.; Oliveira, C. J. Characterization of Dry and Wet Periods of Fortaleza City (CE). Ciência e Natura. 2015, 37, 3–7. https://doi.org/10.5902/2179460X16206

Moura, M. O.; Zanella, M. E.; Sales, M. C. L. Ilhas Térmicas na Cidade de Fortaleza/CE.; Boletim Goiano de Geografia. 2008, 28 (2), 33–44. https://doi.org/10.5216/bgg.v28i2.5718

Moura, M. O. Anomalias das temperaturas extremas do ar em Fortaleza, Ceará, Brasil. Revista Brasileira de Geografia Física. 2015, 8 (6), 1588–1600. https://doi.org/10.5935/1984-2295.20150089

Muniz-Gäal, L. P.; Pezzuto, C. C.; Carvalho, M. F. H.; Mota, L. T. M. Parâmetros urbanísticos e o conforto térmico de cânions urbanos: o exemplo de Campinas, SP. Ambiente Construído. 2018, 18 (2), 177–196. https://doi.org/10.1590/s1678-86212018000200249

Nakata-Osaki, C. M.; Souza, L. C. L.; Rodrigues, D. S. Impacto da geometria do cânion urbano na intensidade de ilha de calor noturna: análise através de um modelo simplificado adaptado a um SIG. Ambiente Construído. 2016, 16 (3), 73–87. https://doi.org/10.1590/s1678-86212016000300093

Nascimento, L. F. C.; Braga, A. L. F.; Modolo, M. C. C. Effects of air pollution on children’s health in a city in Southeastern Brazil. Revista de Saúde pública. 2006, 40 (1), 77–82. https://doi.org/10.1590/S0034-89102006000100013

Negrisoli, J.; Nascimento, L. F. C. Atmospheric pollutants and hospital admissions due to pneumonia in children. Revista Paulista de Pediatria. 2013, 31 (4), 501–506. https://doi.org/10.1590/S0103-05822013000400013

Oke, T. R.; Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization, 2004.

Pestana, P. R. S.; Braga, A. L. F.; Ramos, E. M. C.; Oliveira, A. F.; Osadnik, C. R.; Ferreira, A. D.; Ramos, D. Effects of air pollution caused by sugarcane burning in Western São Paulo on the cardiovascular system. Revista de Saúde Pública. 2017, 51, 13. https://doi.org/10.1590/s1518-8787.2017051006495

Piceli, P. C.; Lisboa, H. M. Quantificação de benzeno, tolueno, etilbenzeno e xilenos no ar de ambientes internos. Engenharia Sanitária e Ambiental. 2018, 23 (3), 527–534. https://doi.org/10.1590/S1413-41522018119310

Rao, M.; George, L. A.; Rosenstiel, T. N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environmental Pollution. 2014, 194. 96–104. https://doi.org/10.1016/j.envpol.2014.07.011

Richmond-Bryant, J.; R. Chris Owen, R. C.; Graham, S.; Snyder, M.; Mcdow1, S.; Oakes, M.; Kimbrough, S. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Quality, Atmosphere & Health. 2017, 10, 611–625. https://doi.org/10.1007/s11869-016-0455-7

Russo, A.; Trigo, R. M.; Martins, H.; Mendes, M. T. NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmospheric Environment. 2014, 89, 768–785. https://doi.org/10.1016/j.atmosenv.2014.02.010

Saltzman, B. E. Colorimetric Microdetermination of Nitrogen Dioxide in Atmosphere. Analytical Chemistry. 1954, 26 (12), 1949–1955. https://doi.org/10.1021/ac60096a025

Shaw, J. T. The measurement of nitrogen dioxide in the air. Atmospheric Environment. 1967, 1 (2), 81–85. https://doi.org/10.1016/0004-6981(67)90036-4

Shiraiwa, M.; Selzle, K.; Pöschl, U. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Research. 2012, 46 (8), 927–939. https://doi.org/10.3109/10715762.2012.663084

Souza, A.; Santos, D. A. S. Análise das Componentes Principais no Processo de Monitoramento Ambiental. Nativa. 2018, 6 (6), 639–647. https://doi.org/10.31413/nativa.v6i6.6453

Souza, P. A. F.; Cardoso, A. A.; Karen, F. C. A. Desenvolvimento de Amostrador Passivo Sensível para Monitoramento de Poluição Atmosférica por Dióxido de Nitrogênio. Quimica Nova. 2017, 40, 1233. https://doi.org/10.21577/0100-4042.20170117

Stricker, M. D.; Onland-Moret, N. C.; Boer, J. M. A.; Van Der Schouw, Y. T.; Verschuren, W. M. M.; May, A. M.; Peeters, P. H. M.; Beulens, J. W. J. Dietary patterns derived from principal component- and k-means cluster analysis: Long-term association with coronary heart disease and stroke. Nutrition. Metabolism & Cardiovascular Diseases. 2013, 23 (3), 250–256. https://doi.org/10.1016/j.numecd.2012.02.006

Ugucione, C.; Gomes Neto, J. A.; Cardoso, A. A. Método Colorimétrico para Determinação de Dióxido de Nitrogênio Atmosférico com Preconcentração em Coluna de C–18; Química Nova. 2002, 25 (3), 353–357. https://doi.org/10.1590/S0100-40422002000300003

World Health Organization (WHO). Air Quality Guideline for Particulate matter, Ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. https://iris.who.int/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1 (accessed 2018-04-20).

Xu, Q.; Ding, C.; Liu, J.; Luo, B. PCA-guided search for K-means. Pattern Recognition Letters. 2015, 54 (1), 50–55. https://doi.org/10.1016/j.patrec.2014.11.017

Zanetti, P.; Melli, P.; Environmental Modelling; WIT Press, 1992.