Estimation of nitrogen dioxide levels on streets from Fortaleza Brazil using passive sampling and multivariate analysis
Main Article Content
Abstract
The increase in the fleet of motor vehicles circulating in urban centers is one of the main generators of gaseous pollutants harmful to human health and the environment. Pollutants can be economically and effectively monitored through passive sampling. This study aims to estimate NO2 levels on roads of Fortaleza city /CE using the passive sampling method. 12 campaigns covered the rainy (March-June) and the dry (July-November) seasons in 2019. The seasonal averages of NO2 in the rainy season were higher than the dry one, and Almirante Rubim Street showed the greatest difference in the averages: 26.6 µg m-3 in the rainy and 19.3 µg m-3 in the dry season. The principal component analysis applied to the averages of NO2 concentration in the rainy and dry seasons, vehicle traffic and Height of the road/width ratio indicated that components 1, 2 and 3 explain 94.4% of the studied cases. Passive sampling proved to be efficient, contributing to the production of unpublished data about NO2 levels in streets of Fortaleza/Ceará/Brazil from mobile sources.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Aguiar, L. F. M. C.; Silva, M. V. C.; Gandu, A. W.; Rocha, C. A.; Cavalcante, R. M. Caracterização de Cânions Urbanos e seus Efeitos Climáticos em Área com Intenso Processo de Verticalização na Cidade de Fortaleza, Ceará. Revista Brasileira de Geografia Física. 2017, 10 (4), 1046–1058. https://doi.org/10.26848/rbgf.v10.4.p1046-1058
Aránguez, E.; Ordóñes, J. M.; Serrano, J.; Aragonés, N.; Fernández-Partier, R.; Gandarillas, A.; Galán, I. Contaminantes Atmosféricos y su Vigilancia. Revista Española de Salud Pública. 1999, 73 (2), 123–132. https://doi.org/10.1590/S1135-57271999000200003
Arbex, M. A.; Santos, U. P.; Martins, L. C., Saldiva, P. H. N.; Pereira, L. A. A.; Braga, A. L. F. Air pollution and the respiratory system. Jornal Brasileiro de Pneumologia. 2012, 38 (5), 643–655. https://doi.org/10.1590/S1806-37132012000500015
Azevedo, B. B.; Anzanello, M. J. Agrupamento de trabalhadores com perfis semelhantes de aprendizado apoiado em Análise de Componentes Principais. Gestão & Produção. 2015, 22 (1), 35–52. https://doi.org/10.1590/0104-530X1094
Baird, C.; Cann, M. Química Ambiental; Bookman, 2011.
Bari, A.; Curran, R. L. T.; Kindzierski, W. B. Field performance evaluation of Maxxam passive samplers for regional monitoring of ambient SO2, NO2 and O3 concentrations in Alberta, Canada. Atmospheric Environment. 2015, 114, 39–47. https://doi.org/10.1016/j.atmosenv.2015.05.031
Bender, A. P.; Dziedzic, M. Dispersão de poluentes nos eixos estruturais em Curitiba (PR), Brasil. Engenharia Sanitária e Ambiental. 2014, 19 (spe), 31–42. https://doi.org/10.1590/S1413-41522014019010000364
Biswal, A.; Singh, T.; Singh, V.; Ravindra, K.; Mor, S. COVID–19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data. Helion. 2020, 6 (9), E04764. https://doi.org/10.1016/j.heliyon.2020.e04764
Bozkurt, Z.; Üzmez, Ö. Ö.; Döğeroğlu, T.; Artun, G.; Gaga, E. O. Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: Sources, spatial and seasonal variations and health risk estimation. Atmospheric Pollution Research. 2018, 9 (6), 1146–1156. https://doi.org/10.1016/j.apr.2018.05.001
Campos, V.; Passos, L.; Godoi, R. H. M.; Godoi, A. F. L.; Tavares, T. M. Development and validation of passive samplers for atmospheric monitoring of SO2, NO2, O3 and H2S in tropical áreas. Microchemical Journal. 2010, 96 (1), 132–138. https://doi.org/10.1016/j.microc.2010.02.015
Carslaw, D. C.; Murrells, T. P.; Anderssonc, J.; Keenanc, M. Have vehicle emissions of primary NO2 peaked? Faraday Discussions. 2016, 189, 439–454. https://doi.org/10.1039/C5FD00162E
Conselho Nacional do Meio Ambiente (CONAMA). Resolução nº 491, de 19 de novembro de 2018. Dispõe sobre padrões de qualidade do ar; Ministério do Meio Ambiente, 2018. https://www.in.gov.br/web/guest/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/51058895/do1-2018-11-21-resolucao-n-491-de-19-de-novembro-de-2018-51058603 (accessed 2018-12-08).
Cruz, L. P. S.; Campos, V. Métodos de amostragem e análise para compostos reduzidos de enxofre atmosférico. Química Nova. 2008, 31 (5), 1180–1189. https://doi.org/10.1590/S0100-40422008000500047
Datasus. Ministério da Saúde. Sistema de Informações sobre Internações Causadas por Doenças no Sistema Respiratório; Datasus, 2019. http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sih/cnv/niuf.def (accessed 2019-11-17).
Ding, J.; Ronald van der A.; Mijling, B.; Laat, J.; Eskes, H.; Boersma, K. F. NOx emissions in India derived from OMI satellite observations. Atmospheric Environment: X. 2022, 14, 100174. https://doi.org/10.1016/j.aeaoa.2022.100174
Dita, P. A.; Dias. J. W. C. Método do Arsenito de Sódio para a Determinação de Dióxido de Nitrogênio na Atmosfera; Energética, 2016.
Drumm, F. C.; Gerhardt, A. E.; Fernandes, G. D.; Chagas, P.; Sucolotti, M. S.; Kemerich, P. D. C. Air Pollution from the Burning of Fuels Derived from Petroleum in Motor Vehicles. Revista Eletronica em Gestão, Educação e Tecnologia Ambiental. 2013, 18 (1), 66–78. https://doi.org/10.5902/2236117010537
Duan, Y.; Liao, Y.; Li, H.; Yan, S.; Zhao, Z.; Yu, S.; Fu, Y.; Wang, Z.; Yin, P.; Cheng, J.; Jiang, H. Effect of changes in season and temperature on cardiovascular mortality associated with nitrogen dioxide air pollution in Shenzhen, China. Science of the Total Environment. 2019, 697, 134051. https://doi.org/10.1016/j.scitotenv.2019.134051
European Environment Agency (EEA). The European Union (EU) has developed an extensive body of legislation which establishes standards and objectives for a number of pollutants in air; EEA, 2018 (Last updated on 2023-11-23). https://www.eea.europa.eu/themes/air/air-quality-concentrations/air-quality-standards (accessed 2018-04-07).
United States Environmental Protection Agency (EPA). NAAQS Table; EPA, 2018 (Last updated on 2024-02-07). https://www.epa.gov/criteria-air-pollutants/naaqs-table (accessed 2018-04-07).
Ferreira, M. M. C. Quimiometria: Conceitos. Métodos e Aplicações; Editora Unicamp, 2015. https://doi.org/10.7476/9788526814714
Freedman, B. The Ecological Effects of Pollution, Disturbance and Other Stresses. In Environmental Ecology; Academic Press, 1995.
Gasmi, K.; Aljalal, A.; Al-Basheer, W.; Abdulahi, M. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Climate. 2017, 21, 232–242. https://doi.org/10.1016/j.uclim.2017.07.002
Ghosh, S.; Dubey, S. K. Comparative Analysis of K-Means and Fuzzy CMeans Algorithms. International Journal of Advanced Computer Science and Applications. 2013, 4 (4), 35–39. https://doi.org/10.14569/IJACSA.2013.040406
Ghozilaki, M. G.; Heibati, B.; Naddafi, K.; Kloog, I.; Conti, G. O.; Polosa, R.; Ferrante, M. Evaluation of Chronic Obstructive Pulmonary Disease (COPD) attributed to atmospheric O3, NO2, and SO2 using Air Q Model (2011–2012 year). Environmental Research. 2016, 144 (A), 99–105. https://doi.org/10.1016/j.envres.2015.10.030
Grundström, M.; Pleijel, H. Limited effect of urban tree vegetation on NO2 and O3 concentrations near a traffic Route. Environmental Pollution. 2014, 189, 73–76. https://doi.org/10.1016/j.envpol.2014.02.026
Guo, P.; Miao, H.; Chen, Y.; Fu, Y.; Zhao, Q.; Li, B. Maternal exposure to gaseous ambient air pollutants increases the risk of preterm birth in the Pearl River Delta, China 2014–2017. Science of The Total Environment. 2019, 671, 959–970. https://doi.org/10.1016/j.scitotenv.2019.03.375
Halim, N. D. A.; Latif, M. T.; Ahamad, F; Dominick, D.; Chung, J. X.; Juneng, L.; Khan, F. The long-term assessment of air quality on an island in Malaysia. Helion, 2018, 4 (12), e01054. https://doi.org/10.1016/j.heliyon.2018.e01054
Hammer, Ø.; Harper, D. A. T.; Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001, 4 (1), 9.
Han, S.; Bian, H.; Feng, Y.; Liu, A.; Li, X.; Zeng, F.; Zhang, X. Analysis of the Relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research. 2011, 11 (2), 128–139. https://doi.org/10.4209/aaqr.2010.07.0055
Harner, T.; Su, K.; Genualdi, S.; Karpowicz, J.; Ahrens, L.; Mihele, C.; Schuster, J.; Charland, J. P.; Narayan, J. Calibration and application of PUF disk passive air samplers for tracking polycyclic aromatic compounds (PACs). Atmospheric Environment. 2013, 75, 123–128. https://doi.org/10.1016/j.atmosenv.2013.04.012.
Hatzopoulou, M.; Weichenthal, S.; Dugum, H.; Pickett, G.; Miranda-Moreno, L.; Kulka, R.; Andersen, R.; Goldberg, M. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology. 2013, 23, 46–51. https://doi.org/10.1038/jes.2012.85
Hauser, C. D.; Buckey, A.; Porter, J. Passive samplers and community science in regional air quality measurement, education and communication. Environmental Pollution. 2015, 203, 243–249. https://doi.org/10.1016/j.envpol.2014.12.028
Hien, P. D.; Hangartner, M.; Fabian, S.; Tan, P. M. Concentrations of NO2, SO2, and benzene across Hanoi measured by passive diffusion samplers. Atmospheric Environment. 2014, 88, 66–73. https://doi.org/10.1016/j.atmosenv.2014.01.036
Honda, K.; Notsu, A.; Ichihashi, H. Fuzzy PCA-Guided Robust k-Means Clustering. IEEE Transactions on Fuzzy Systems. 2010, 18 (1), 67–79. https://doi.org/10.1109/TFUZZ.2009.2036603
Hongyu, K.; Sandanielo, V. L. M.; Oliveira Junior, G. J. Análise de Componentes Principais: Resumo Teórico, Aplicação e Interpretação. Engineering and Science. 2016, 5 (1), 83–90. https://doi.org/10.18607/ES201653398
Instituto Nacional de Meteorologia (INMET). Banco de dados meteorológicos (BDMEP); INMET, 2019. https://bdmep.inmet.gov.br/ (accessed 2019-11-07).
Instituto Brasileiro de Geografia e Estatistica (IBGE). Frota de Veículos; IBGE, 2019. https://cidades.ibge.gov.br/brasil/ce/fortaleza/pesquisa/22/28120 (accessed 2019-11-03).
Januševičius, T.; Grubliauskas, R. The effect of speed bumps and humps on the concentrations of CO, NO and NO2 in ambient air. Air Quality, Atmosphere & Health. 2019, 12, 635–642. https://doi.org/10.1007/s11869-019-00683-y
Kamińska, J. A. A random forest partition model for predicting NO2 concentrations from traffic flow and meteorological conditions. Science of the Total Environment. 2019, 651 (1), 475–483. https://doi.org/10.1016/j.scitotenv.2018.09.196
Karamizadeh, S.; Abdullah, S. M.; Manaf, A. A.; Zamani, M.; Hooman, A. An Overview of Principal Component Analysis. Journal of Signal and Information Processing. 2013, 4 (3B), 173–175. https://doi.org/10.4236/jsip.2013.43B031
Lacava, C. I. V.; Alvares Junior, O. M.; Fernandes, P. S. Emissões Atmosféricas; SENAI, 2002.
Lenzi, E.; Favero, L. O. B. Introdução à Química da Atmosfera: Ciência. Vida e Sobrevivência; LTC, 2014.
Lisboa, H.; Kawano, M. Monitoramento de poluentes atmosféricos. Controle da Poluição Atmosférica; ENS-UFSC, 2010.
Lodge, J. P. Methods of Air Sampling and Analysis; Lewis Publishers, 1988.
Lyra, W. S.; Silva, E. C.; Araújo, M. C. U.; Fragoso, W. D. Classificação Periódica: Um Exemplo Didático Para Ensinar Análise de Componentes Principais. Química Nova. 2010. 33 (7), 1594–1597. https://doi.org/10.1590/S0100-40422010000700030
Maia, K. P.; Silva, G. A.; Libânio, M. Aplicação de análise multivariada no estudo da frequência de amostragem e do número de estações de monitoramento de qualidade da água. Engenharia Sanitária e Ambiental. 2019, 24 (5), 1013–1025. https://doi.org/10.1590/S1413-41522019175743
Martins, L. C.; Latorre, M. R. D. O.; Cardoso, M. R. A.; Gonçanves, F. L. T.; Saldiva, P. H. N.; Braga, A. L. F. Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Revista de Saúde Pública. 2002, 36 (1), 88–94. https://doi.org/10.1590/S0034-89102002000100014
Masey, N.; Gillespie, J.; Heal, M. R.; Hamilton, S.; Beverland. I. J. Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers. Atmospheric Environment. 2017, 160, 70–76. https://doi.org/10.1016/j.atmosenv.2017.04.008
Mehta, N. S.; Dey, S. Automobile pollution control using catalysis. Resources, Environment and Sustainability. 2020, 2, 100006. https://doi.org/10.1016/j.resenv.2020.100006
Miranda, D. C.; Ferreira, G. C.; Barbosa, L. D.; Pereira, N. L. A.; Ribeiro, T. C.; Maloncy, M. L.; Batista, M. S. Análise dos Poluentes Atmosféricos NO2 E O3 Via Amostradores Passivos de Baixo Custo. E-Xacta. 2017, 10 (1), 29–35. https://doi.org/10.18674/exacta.v10i1.1960
Monte, E. Z.; Albuquerque, T. T. A.; Reisen, V. A. Impactos das Variáveis Meteorológicas na Qualidade do Ar da Região da Grande Vitória, Espírito Santo, Brasil. Revista Brasileira de Meteorologia. 2016, 31 (4 suppl 1), 546–554. https://doi.org/10.1590/0102-7786312314b20150100
Moori, R. G.; Marcondes, R. C.; Ávila, R. T. A Análise de Agrupamentos como Instrumento de Apoio à Melhoria da Qualidade dos Serviços aos Clientes. Revista de Administração Contemporânea. 2002, 6 (1), 63–84. https://doi.org/10.1590/S1415-65552002000100005
Moura, I. S. M.; Santos, D. F.; Pinheiro, F. G. M.; Oliveira, C. J. Characterization of Dry and Wet Periods of Fortaleza City (CE). Ciência e Natura. 2015, 37, 3–7. https://doi.org/10.5902/2179460X16206
Moura, M. O.; Zanella, M. E.; Sales, M. C. L. Ilhas Térmicas na Cidade de Fortaleza/CE.; Boletim Goiano de Geografia. 2008, 28 (2), 33–44. https://doi.org/10.5216/bgg.v28i2.5718
Moura, M. O. Anomalias das temperaturas extremas do ar em Fortaleza, Ceará, Brasil. Revista Brasileira de Geografia Física. 2015, 8 (6), 1588–1600. https://doi.org/10.5935/1984-2295.20150089
Muniz-Gäal, L. P.; Pezzuto, C. C.; Carvalho, M. F. H.; Mota, L. T. M. Parâmetros urbanísticos e o conforto térmico de cânions urbanos: o exemplo de Campinas, SP. Ambiente Construído. 2018, 18 (2), 177–196. https://doi.org/10.1590/s1678-86212018000200249
Nakata-Osaki, C. M.; Souza, L. C. L.; Rodrigues, D. S. Impacto da geometria do cânion urbano na intensidade de ilha de calor noturna: análise através de um modelo simplificado adaptado a um SIG. Ambiente Construído. 2016, 16 (3), 73–87. https://doi.org/10.1590/s1678-86212016000300093
Nascimento, L. F. C.; Braga, A. L. F.; Modolo, M. C. C. Effects of air pollution on children’s health in a city in Southeastern Brazil. Revista de Saúde pública. 2006, 40 (1), 77–82. https://doi.org/10.1590/S0034-89102006000100013
Negrisoli, J.; Nascimento, L. F. C. Atmospheric pollutants and hospital admissions due to pneumonia in children. Revista Paulista de Pediatria. 2013, 31 (4), 501–506. https://doi.org/10.1590/S0103-05822013000400013
Oke, T. R.; Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization, 2004.
Pestana, P. R. S.; Braga, A. L. F.; Ramos, E. M. C.; Oliveira, A. F.; Osadnik, C. R.; Ferreira, A. D.; Ramos, D. Effects of air pollution caused by sugarcane burning in Western São Paulo on the cardiovascular system. Revista de Saúde Pública. 2017, 51, 13. https://doi.org/10.1590/s1518-8787.2017051006495
Piceli, P. C.; Lisboa, H. M. Quantificação de benzeno, tolueno, etilbenzeno e xilenos no ar de ambientes internos. Engenharia Sanitária e Ambiental. 2018, 23 (3), 527–534. https://doi.org/10.1590/S1413-41522018119310
Rao, M.; George, L. A.; Rosenstiel, T. N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environmental Pollution. 2014, 194. 96–104. https://doi.org/10.1016/j.envpol.2014.07.011
Richmond-Bryant, J.; R. Chris Owen, R. C.; Graham, S.; Snyder, M.; Mcdow1, S.; Oakes, M.; Kimbrough, S. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Quality, Atmosphere & Health. 2017, 10, 611–625. https://doi.org/10.1007/s11869-016-0455-7
Russo, A.; Trigo, R. M.; Martins, H.; Mendes, M. T. NO2, PM10 and O3 urban concentrations and its association with circulation weather types in Portugal. Atmospheric Environment. 2014, 89, 768–785. https://doi.org/10.1016/j.atmosenv.2014.02.010
Saltzman, B. E. Colorimetric Microdetermination of Nitrogen Dioxide in Atmosphere. Analytical Chemistry. 1954, 26 (12), 1949–1955. https://doi.org/10.1021/ac60096a025
Shaw, J. T. The measurement of nitrogen dioxide in the air. Atmospheric Environment. 1967, 1 (2), 81–85. https://doi.org/10.1016/0004-6981(67)90036-4
Shiraiwa, M.; Selzle, K.; Pöschl, U. Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radical Research. 2012, 46 (8), 927–939. https://doi.org/10.3109/10715762.2012.663084
Souza, A.; Santos, D. A. S. Análise das Componentes Principais no Processo de Monitoramento Ambiental. Nativa. 2018, 6 (6), 639–647. https://doi.org/10.31413/nativa.v6i6.6453
Souza, P. A. F.; Cardoso, A. A.; Karen, F. C. A. Desenvolvimento de Amostrador Passivo Sensível para Monitoramento de Poluição Atmosférica por Dióxido de Nitrogênio. Quimica Nova. 2017, 40, 1233. https://doi.org/10.21577/0100-4042.20170117
Stricker, M. D.; Onland-Moret, N. C.; Boer, J. M. A.; Van Der Schouw, Y. T.; Verschuren, W. M. M.; May, A. M.; Peeters, P. H. M.; Beulens, J. W. J. Dietary patterns derived from principal component- and k-means cluster analysis: Long-term association with coronary heart disease and stroke. Nutrition. Metabolism & Cardiovascular Diseases. 2013, 23 (3), 250–256. https://doi.org/10.1016/j.numecd.2012.02.006
Ugucione, C.; Gomes Neto, J. A.; Cardoso, A. A. Método Colorimétrico para Determinação de Dióxido de Nitrogênio Atmosférico com Preconcentração em Coluna de C–18; Química Nova. 2002, 25 (3), 353–357. https://doi.org/10.1590/S0100-40422002000300003
World Health Organization (WHO). Air Quality Guideline for Particulate matter, Ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. https://iris.who.int/bitstream/handle/10665/69477/WHO_SDE_PHE_OEH_06.02_eng.pdf?sequence=1 (accessed 2018-04-20).
Xu, Q.; Ding, C.; Liu, J.; Luo, B. PCA-guided search for K-means. Pattern Recognition Letters. 2015, 54 (1), 50–55. https://doi.org/10.1016/j.patrec.2014.11.017
Zanetti, P.; Melli, P.; Environmental Modelling; WIT Press, 1992.