Influence of chitosan’s purification methodology on the formation of layer-by-layer films
Main Article Content
Abstract
Concern for the environment for the development of new biodegradable materials has been constant in scientific circles. With this in mind, this work proposes a study on the formation of self-assembled thin films using chitosan (Qt), a biodegradable material. This polyelectrolyte has several purification methodologies, but we did not identify any studies on the effect of these methodologies on film formation. Thus, after the purification process and characterization of the three forms of chitosan purification, films were produced using the layer-by-layer (LBL) technique. The growth of the films was monitored using the UV-vis technique. Spectroscopy in the Infrared region showed positions in the main bands present in chitosan and sodium nitroprusside (NP) in the formed films. Two semi-reversible processes were found for the QtN/NP and QtAc/NP films, related to the reduction of iron oxide present in the NP. The effect of pH (4.0, 7.0 and 10) on the electrochemical processes indicated that the charge transfer occurs more efficiently at pH 7.0.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Amanulla, B.; Palanisamy, S.; Chen, S.-M.; Chiu, T.-W.; Velusamy, V.; Hall, J. M.; Chen, T.-W.; Ramaraj, S. K. Selective Colorimetric Detection of Nitrite in Water using Chitosan Stabilized Gold Nanoparticles Decorated Reduced Graphene oxide. Sci. Rep. 2017, 7 (9) 1–9. https://doi.org/10.1038/s41598-017-14584-6
Ariga, K.; Ji, Q.; McShane, M. J.; Lvov, Y. M.; Vinu, A.; Hill, J. P. Inorganic nanoarchitectonics for biological applications. Chem. Mater. 2012, 24 (5), 728–737. https://doi.org/10.1021/cm202281m
Arrascue, M. L.; Garcia, H. M.; Horna, O.; Guibal, E. Gold sorption on chitosan derivatives. Hydrometallurgy. 2003, 71 (1–2), 191–200. https://doi.org/10.1016/S0304-386X(03)00156-7
Battisti, M. V.; Campana-Filho, S. P. Obtenção e caracterização de α-quitina e quitosanas de cascas de Macrobrachium rosembergii. Quim. Nova. 2008, 31 (8), 2014–2019. https://doi.org/10.1590/S0100-40422008000800019
Canella, K. M. N. D. C.; Garcia, R. B. Caracterização de quitosana por cromatografia de permeação em gel -Influência do metodo de preparacao e do solvente. Quim. Nova. 2001, 24 (1), 13–17. https://doi.org/10.1590/S0100-40422001000100004
César, D. S.; Miyoshi, E.; Halpern, H.; Auler, J. Fenoldopam: Novo antihipertensivo parenteral; alternativa ao nitroprussiato. Rev. Bras. Anestesiol. 2001, 51 (6), 528–536. https://doi.org/10.1590/s0034-70942001000600008
Cheung, J. H.; Punkka, E.; Rikukawa, M.; Rosner, R. B.; Royappa, A. T.; Rubner, M. F. New developments in the Langmuir-Blodgett manipulation of electroactive polymers. Thin Solid Films. 1992, 210–211 (Part 1), 246–249. https://doi.org/10.1016/0040-6090(92)90224-Y
Crespilho, F. N.; Zucolotto, V.; Siqueira, J. R.; Carvalho, A. J. F.; Nart, F. C.; Oliveira Junior, O. N. Using electrochemical data to obtain energy diagrams for layer-by-layer films from metallic phthalocyanines. Int. J. Electrochem. Sci. 2006a, 1 (4), 151–159. https://doi.org/10.1016/S1452-3981(23)17145-8
Crespilho, F. N.; Zucolotto, V.; Oliveira Junior, O. N.; Nart, F. C. Electrochemistry of layer-by-layer films: A review. Int. J. Electrochem. Sci. 2006b, 1 (5), 194–214. https://doi.org/10.1016/S1452-3981(23)17150-1
Crini, G.; Badot, P. M. Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Prog. Polym. Sci. 2008, 33 (4), 399–447. https://doi.org/10.1016/j.progpolymsci.2007.11.001
Delolo, F. G.; Rodrigues, C.; Silva, M. M.; Dinelli, L. R.; Delling, F. N.; Zukerman-Schpector, J.; Batista, A. A. A new electrochemical sensor containing a film of chitosan-supported ruthenium: Detection and quantification of sildenafil citrate and acetaminophen. J. Braz. Chem. Soc. 2014, 25 (3), 550–559. https://doi.org/10.5935/0103-5053.20140031
Eiras, C.; Passos, I. N. G.; Brito, A. C. F.; Santos Júnior, J. R.; Zucolotto, V.; Oliveira Junior, O. N.; Kitagawa, I. L.; Constantino, C. J. L.; Cunha, H. N. Nanocompósitos eletroativos de poli-o-metoxianilina e polissacarídeos naturais. Quim. Nova. 2007, 30 (5), 1158–1162. https://doi.org/10.1590/S0100-40422007000500020
Freitas, A. F.; Bacal, F.; Oliveira, J. L.; Fiorelli, A. I.; Santos, R. H.; Moreira, L. F. P.; Silva, C. P.; Mangini, S.; Tsutsui, J. M.; Bocchi, E. A. Sildenafil vs. Sodium before nitroprusside for the pulmonary hypertension reversibility test before cardiac transplantation. Arq. Bras. Cardiol. 2012, 99 (3), 848–856. https://doi.org/10.1590/S0066-782X2012005000076
Gao, F.; Hu, Y.; Gong, Z.; Liu, T.; Gong, T.; Liu, S.; Zhang, C.; Quan, L.; Kaveendran, B.; Pan, C. Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. Mater. Sci. Eng. C. 2019, 104, 109947. https://doi.org/10.1016/j.msec.2019.109947
Gonsalves, A. A.; Araújo, C. R. M.; Soares, N. A.; Goulart M. O. F.; Abreu, F. C. Diferentes estratégias para a reticulação de quitosana. Quim. Nova. 2011, 34 (7), 1215–1223. https://doi.org/10.1590/S0100-40422011000700021
Kumar, M. N. V. R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46 (1), 1–27. https://doi.org/10.1016/S1381-5148(00)00038-9
Laranjeira, M. C. M.; Fávere, V. T. Quitosana: biopolímero funcional com potencial industrial biomédico. Quim. Nova. 2009, 32 (3), 672–678. https://doi.org/10.1590/S0100-40422009000300011
Li, H.; Peng, L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr. Polym. 2015, 124, 35–42. https://doi.org/10.1016/j.carbpol.2015.01.071
Lins, L. C.; Bazzo, G. C.; Barreto, P. L. M.; Pires, A. T. N. Composite PHB/Chitosan microparticles obtained by spray drying: Effect of chitosan concentration and crosslinking agents on drug relesase. J. Braz. Chem. Soc. 2014, 25 (8), 1462–1471. https://doi.org/10.5935/0103-5053.20140129
Lu, X.; Chen, Z.; Yu, Q.; Zhu, W.; Li, S.; Han, L.; Yuan, J.; Li, S.; Wu, Y.; Lv, Z.; Chen, B.; You, H. Electrochemical Properties of Chitosan-Modified PbO2 as Positive Electrode for Lead–Acid Batteries. Energy Technol. 2022, 10 (12), 2200910. https://doi.org/10.1002/ente.202200910
Luo, H.; Shen, Q.; Ye, F.; Cheng, Y. F.; Mezgebe, M.; Qin, R. J. Structure and properties of layer-by-layer self-assembled chitosan/lignosulfonate multilayer film. Mater. Sci. Eng. C. 2012, 32 (7), 2001–2006. https://doi.org/10.1016/j.msec.2012.05.023
Marques Neto, J. O.; Bellato, C. R.; Milagres, J. L.; Pessoa, K. D.; Alvarenga, E. S. Preparation and evaluation of chitosan beads immobilized with iron(III) for the removal of As(III) and As(V) from water. J. Braz. Chem. Soc. 2013, 24 (1), 121–132. https://doi.org/10.1590/S0103-50532013000100017
Martínez-Camacho, A. P.; Cortez-Rocha, M. O.; Ezquerra-Brauer, J. M.; Graciano-Verdugo, A. Z.; Rodriguez-Félix, F.; Castillo-Ortega, M. M.; Yépiz-Gómez, M. S.; Plascencia-Jatomea, M. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010, 82 (2), 305–315. https://doi.org/10.1016/j.carbpol.2010.04.069
Martins, J. T.; Cerqueira, M. A.; Vicente, A. A. Influence of α-tocopherol on physicochemical properties of chitosan-based filmes. Food Hydrocoll. 2012, 27 (1), 220–227. https://doi.org/https://doi.org/10.1016/j.foodhyd.2011.06.011
Nesic, A. R.; Onjia, A.; Ostojic, S. B.; Micic, D. M.; Velickovic, S. J.; Antonovic, D. G. Novel biosensor films based on chitosan. Mater. Lett. 2016, 167, 47–49. https://doi.org/10.1016/j.matlet.2015.12.124
Oliveira Junior, O. N.; Raposo, M.; Dhanabalan, A. Handbook of Surface and Interfaces of Materials; Academic Press, 2001.
Osiri, H.; Cano, A.; Reguera, L.; Lemus-Santana, A. A.; Regueira, E. Mercury (I) nitroprusside: A 2D structure supported on homometallic interactions, J. Solid State Chem. 2015, 221, 79–84. https://doi.org/10.1016/j.jssc.2014.09.021
Ottøy, M. H.; Vårum, K. M.; Christensen, B. E.; Anthonsen, M. W.; Smidsrød, O. Preparative and analytical size-exclusion chromatography of chitosans. Carbohydr. Polym. 1996, 31 (4), 253–261. https://doi.org/10.1016/S0144-8617(96)00096-3
Palliani, G.; Poletti, A.; Santucci, A. Vibrational spectrum of sodium nitroprusside. Normal coordinateanalysis for the Fe(CN)5NO2− ion. J. Mol. Struct. 1971, 8 (1–2), 63–74. https://doi.org/10.1016/0022-2860(71)80043-1
Pannell, M. J.; Doll, E. E.; Labban, N.; Wayu, M. B.; Pollock, J. A.; Leopold, M. C. Versatile sarcosine and creatinine biosensing schemes utilizing layer-by-layer construction of carbon nanotube-chitosan composite films. J. Electroanal. Chem. 2018, 814, 20–30. https://doi.org/10.1016/j.jelechem.2018.02.023
Picart, C.; Mutterer, J.; Richert, L.; Luo, Y.; Prestwich, G. D.; Schaaf, P.; Voegel, J. C.; Lavelle, P. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A. 2002, 20, 1–99. https://doi.org/10.1073/pnas.202486099.
Raymond, L.; Morin, F. G.; Marchessault, R. H. Degree of deacetylation of chitosan using conductometric titration and solid-state NMR. Carbohydr. Res. 1993, 246 (1), 331–336. https://doi.org/10.1016/0008-6215(93)84044-7
Roberts, G. A. F. Chitin Chemistry; Macmillan Publishers Limite, 1992. https://doi.org/https://doi.org/10.1007/978-1-349-11545-7
Rodrigues, G. D.; Silva, L. H. M.; Silva, M. C. H. Alternativas verdes para o preparo de amostra e determinação de poluentes fenólicos em água. Green alternatives for sample preparation and determination of phenolic pollutants in water. Quim Nova. 2010, 33 (6), 1370–1378. https://doi.org/10.1590/S0100-40422010000600027
Santos, D. S.; Bassi, A.; Rodrigues, J. J.; Misoguti, L.; Oliveira, O. N.; Mendonça, C. R. Light-induced storage in layer-by-layer films of chitosan and an azo dye. Biomacromolecules. 2003, 4 (6), 1502–1505. https://doi.org/10.1021/bm025754f
Sass, N.; Itamoto, C. H.; Silva, M. P.; Torloni, M. R.; Atallah, Á. N. Does sodium nitroprusside kill babies? A systematic review. Sao Paulo Med. J. 2007, 125 (2), 108–111. https://doi.org/10.1590/S1516-31802007000200008
Si, Y.; Park, J. W.; Jung, S.; Hwang, G. S.; Park, Y. E.; Lee, J. E.; Lee, H. J. Voltammetric layer-by-layer biosensor featuring purine nucleoside phosphorylase and chitosan for inosine in human serum solutions. Sens. Actuators B Chem. 2019, 298, 126840. https://doi.org/10.1016/j.snb.2019.126840
Signini, R.; Campana Filho, S. P. Características e propriedades de quitosanas purificadas nas formas neutra, acetato e cloridrato. Polímeros. 2001, 11 (2), 58–64. https://doi.org/10.1590/s0104-14282001000200007
Signini, R.; Campana Filho, S. P. Purificação e caracterização de quitosana comercial. Polímeros. 1998, 8 (4), 63–68. https://doi.org/10.1590/s0104-14281998000400009
Silva, H. S. R. C.; Kátia, S. C. R.; Ferreira, E. I. Chitosan: hydrossoluble derivatives, pharmaceutical applications and recent advances. Quim Nova. 2006, 29 (4), 776–785. https://doi.org/10.1590/S0100-40422006000400026
Sonne, K.; Dasgupta, P. K. Simultaneous Photometric Flow Injection Determination of Sulfide, Polysulfide, Sulfite, Thiosulfate, and Sulfate. Anal. Chem. 1991, 63 (5), 427–432. https://doi.org/10.1021/ac00005a008
Souza, N. L. G. D.; Salles, T. F.; Brandão, H. M.; Edwards, H. G. M.; Oliveira, L. F. C. Synthesis, vibrational spectroscopic and thermal properties of oxocarbon cross-linked Chitosan. J. Braz. Chem. Soc. 2015, 26 (6), 1247–1256. https://doi.org/10.5935/0103-5053.20150090
Stocche, R. M.; Garcia, L. V.; Reis, M. P.; Miranda, O. Clonidina por via venosa na técnica de hipotensão arterial induzida para timpanoplastias. Rev. Bras. Anestesiol. 2003, 53 (4), 457–466. https://doi.org/10.1590/s0034-70942003000400005
Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 2013, 113 (7), 5458–5479. https://doi.org/10.1021/cr300325r
Swinehart, J. H. The nitroprusside 1. Coord. Chem. Rev. 1967, 2 (4), 385–401. https://doi.org/10.1016/S0010-8545(00)80220-9
Umoren, S. A.; Eduok, U. M. Application of carbohydrate polymers as corrosion inhibitors for metal substrates in different media: A review. Carbohydr. Polym. 2016, 140, 314–341. https://doi.org/10.1016/j.carbpol.2015.12.038
Ungureanu, C.; Ioniţǎ, D.; Berteanu, E.; Tcacenco, L.; Zuav, A.; Demetrescu, I. Improving natural biopolymeric membranes based on chitosan and collagen for biomedical applications introducing silver. J. Braz. Chem. Soc. 2015, 26 (3), 458–465. https://doi.org/10.5935/0103-5053.20150298
Vinhola, L.; Facci, T.; Dias, L. G.; Azevedo, D. C.; Borissevitch, G.; Huguenin, F. Self-assembled films from chitosan and poly(vinyl sulfonic acid) on Nafion® for direct methanol fuel cell. J. Braz. Chem. Soc. 2012, 23 (3), 531–537. https://doi.org/10.1590/S0103-50532012000300021
Xia, L.; Long, Y.; Li, D.; Huang, L.; Wang, Y.; Dai, F.; Tao, F.; Cheng, Y.; Deng, H. LBL deposition of chitosan and silk fibroin on nanofibers for improving physical and biological performance of patches. Int. J. Biol. Macromol. 2019, 130, 348–356. https://doi.org/10.1016/j.ijbiomac.2019.02.147