Determination of amoxicillin: A penicillin antibiotic in pharmaceutical dosage samples by spectrophotometric method
Main Article Content
Abstract
New coupling agents such as 2,4-toluene diamine or sulphanilamide for the determination of amoxicillin spectrophotometrically are described. These methods are straightforward based on the reaction of amoxicillin with diazotized products of 2,4-toluene diamine or sulphanilamide to produce coloured azo dyes with maximum absorption at 462 or 468 nm. Amoxicillin responds linearly from 1.2–24.8 or 1.8–32.0 mg mL–1 when coupled with diazotized 2,4-toluene diamine or sulphanilamide. The molar absorptivity and Sandell’s sensitivity of amoxicillin with 2,4-toluene diamine or amoxicillin with sulphanilamide azo dyes were 3.307 × 104 or 2.632 × 104 L mol–1 cm–1 and 1.105×10-2 or 1.388×10-2 mg cm-2, respectively. The regression equation, correlation coefficient (R2), detection limit and quantitation limit of amoxicillin with 2,4-toluene diamine or amoxicillin with sulphanilamide were evaluated. The percentage recoveries ranged from 97.00 to 100.50 with a relative standard deviation value was ± 0.98 to ± 1.85%. The method does not need temperature control or solvent extraction and has been applied successfully to determine amoxicillin in pharmaceutical preparation (tablets).
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Ahmed, A. S.; Rahman, N.; Islam, F. Spectrophotometric determination of ampicillin, amoxicillin, carbenicillin using folin ciocalteu phenol reagent. Anal. Chem. 2004, 59, 119–123. https://doi.org/10.1023/B:JANC.0000014736.59554.5c
Al-Abachi, M. Q.; Haddi, H.; Al-Abachi, A. M. Spectrophotometric determination of amoxicillin by reaction with N,N-dimethyl-p-phenylenediamine and potassium hexacyanoferrate(III). Anal. Chim. Acta. 2005, 554 (1–2), 184–189. https://doi.org/10.1016/j.aca.2005.08.030
Aliev, A. M.; Babazade, G. M. Comparative study of quantitative determination of amoxicillin in capsules by mercurimetry and liquid chromatography. Pharm. Chem. J., 2011, 45, 257–260. https://doi.org/10.1007/s11094-011-0610-2
Al-Uzri, W. A. Spectrophotometric determination of amoxicillin in pharmaceutical preparations through diazotization and coupling reaction. Iraqi Journal of Science. 2012, 53 (4), 713–722.
Amoxicillin. The American Society of Health-System Pharmacists. Archived from the original on 5 September 2015. Retrieved, 1 August 2015.
Asan, A.; Seddiq, N. A simple spectrophotometric determination of amoxicillin in Drug samples. J. Turk. Chem. Soc. 2022, 9 (2), 423–432. https://doi.org/10.18596/jotcsa.978686
Blumberg, P. M.; Strominger, J. L. Interaction of penicillin with the bacterial cell: penicillin–binding proteins and penicillin–sensitive enzymes. Bacterial Rev. 1974, 38 (3) 291–335. https://doi.org/10.1128/br.38.3.291-335.1974
Boix, C.; Ibáñez, M.; Bagnati, R.; Zuccato, E.; Sancho, J. V.; Hernández, F.; Castiglioni, S. High-resolution mass spectrometry to investigate omeprazole and venlafaxine metabolites in wastewater. J. Hazard. Mater. 2016, 302, 332–340. https://doi.org/10.1016/j.jhazmat.2015.09.059
Dinh, Q. T.; Alliot, F.; Moreau-Guigona, E.; Eurina, J.; Chevreuil, M.; Labadie, P. Measurement of trace levels of antibiotics in river water using online enrichment and triple-quadrupole. Talanta. 2011, 85 (3), 1238–1245. https://doi.org/10.1016/j.talanta.2011.05.013
Elshafie, F. S.; Gad-Kariem, E. A.; Al-Rashood, K. A.; Al-Khamees, H. A.; El-Obeid, H. A. Colourimetric method for the determination of ampicillin and amoxicillin. Anal. Lett. 1996, 29 (3), 381–393. https://doi.org/10.1080/00032719608000405
Ergin, M. F.; Yasa, H. Determination of amoxicillin trihydrate impurities 4-hydroxyphenylglycine (4-HPG) and 6-Aminopenicylanic acid (6-APA) by means of ultraviolet spectroscopy. Methods Appl Fluoresc, 2022, 10 (3), 25–32. https://doi.org/10.1088/2050-6120/ac7037
Fabregat-Safont, D.; Elena, P.; Lubertus, B.; Ionut, M.; Félix, H. Rapid and sensitive analytical method for the determination of amoxicillin and related compounds in water meeting the requirements of the European union watch list David. J. Chromatogr. B. 2021, 1658, 462605. https://doi.org/10.1016/j.chroma.2021.462605
Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. https://doi.org/10.1016/j.envint.2020.106004
Foroutan, S. M.; Zarghi, A.; Shafaati, A.; Khoddam, A.; Movahed, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by isocratic reversed-phase HPLC using UV detection. J. Pharm. and Biomed. Anal. 2007, 45 (3), 531–534. https://doi.org/10.1016/j.jpba.2007.06.019
Fouladgar, M.; Hadjmohammadi, M. R.; Khalilzadeh, M. A.; Biparva, P.; Teymoori, N.; Beitollah, H. Voltammetric determination of amoxicillin at the electrochemical sensor ferrocene dicarboxylic acid multi-wall carbon nanotubes paste electrode. Int. J. Electrochem. Sci. 2011, 6 (5), 1355–1366. https://doi.org/10.1016/S1452-3981(23)15079-6
Hailekiros, G.; Getu, K.; Tadele, E.; Tesfamichael, G. A validated new RP-HPLC method for simultaneous determination of amoxicillin, ampicillin and cloxacillin in pharmaceutical formulations. Acta Chromatographica. 2022, 35 (2), 193–203. https://doi.org/10.1556/1326.2022.01043
Hernández, F.; Ibáñez, V.; Portolés, T.; Cervera, M. I.; Sancho, J. V.; López, F. J. Advancing towards universal screening for organic pollutants in waters. J. Hazard. Mater. 2015, 282, 86–95. https://doi.org/10.1016/j.jhazmat.2014.08.006
Jalal, M. T. Spectrophotometric determination of amoxicillin trihydrate in pharmaceutical preparation. HIV Nursing. 2023, 23 (2), 140–147. https://doi.org/10.31838/hiv23.02.24
Li, Y.; Tang, Y.; Yao, H.; Fu, J. Determination of ampicillin and amoxicillin by flow injection chemiluminescence method based on their enhancing effects on the luminal-periodate reaction. Luminescence. 2003, 18 (6), 313–317. https://doi.org/10.1002/bio.741
Mahmoud, I. M.; Rafat, N. M.; Monzer, A.; Naser, E. S.; Rafik, H. S.; Akila, S. A. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxicillin and diclofenac sodium in pharmaceutical formulations. J. Serb. Chem. Soc. 2008, 73 (5), 569–576. https://doi.org/10.2298/JSC0805569I
Muñoz de la Peña, A.; Acedo-Valenzuela, M. I.; Espinosa-Mansilla, A.; Sánchez Maqueda, R. Stopped-flow fluorimetric determination of amoxycillin and clavulanic acid by partial least-squares multivariate calibration. Talanta. 2002, 56 (4), 635–642. https://doi.org/10.1016/S0039-9140(01)00612-9
Oliva, D. C.; Velez, K. T.; Vazquez, A. L. R. Simultaneous determination of bromhexine and amoxicillin in pharmaceutical formulations by capillary electrophoresis. J. Mex. Chem. Soc. 2011, 55 (2), 79–83.
Othman, N. S.; Al-Saffar, R. S. Spectrophotometric determination of amoxicillin in pharmaceutical preparations. Intern. J. Enhanced Res. Sci. Tech. Eng. 2015, 4 (6) 167–173. https://doi.org/10.13140/RG.2.2.22557.05604
Quanmin, L.; Zhanjun, Y. Study of spectrophotometric determination of amoxicillin using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. Anal. Lett. 2006, 39 (4), 763–775. https://doi.org/10.1080/00032710600611525
Rao, G. R.; Mohan, K. R. Colorimetric method for estimation of amoxicillin and the dosage form. Ind. Drugs. 1982, 19, 326-337.
Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewaters by SPE-LC–MS/MS. J. Chromatogr. B. 2014, 969, 162–170. https://doi.org/10.1016/j.jchromb.2014.08.008
Santos, D. P.; Bergamini, M. F.; Zanoni M. V. B. Voltammetric sensor for amoxicillin determination in human urine using Polyglutamic acid/glutaraldehyde film. Sensors and Actuators B: Chemical. 2008, 133 (2), 398–403. https://doi.org/10.1016/j.snb.2008.02.045
Singh, D. K.; Maheshwari, G. Spectrophotometric determination of penicillins in pure and pharmaceutical formulations using folin-ciocalteu reagent. Drug test. and Anal. 2010, 2 (10), 503–506. https://doi.org/10.1002/dta.157
European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU/EEA – Annual Epidemiological Report 2019. ECDC, 2020. https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf (accessed 2023-10-20).
Sun, Y.; Tang, Y.; Yao, H.; Li, Y. Flow injection chemiluminescence analysis of some penicillins by their sensitizing effect on the potassium permanganate-glyoxal reaction. Anal. Sci. 2005, 21, 457–460. https://doi.org/10.2116/analsci.21.457
Ünal, K.; Palabiyik, I. M.; Karacan, E.; Onur, F. Spectrophotometric determination of amoxicillin in pharmaceutical formulations. Turk. J. Pharm. Sci. 2008, 5 (1), 1–16.
Uslu, B.; Biryol, I. Voltammetric determination of amoxicillin using a poly (N-vinyl imidazole) modified carbon paste electrode. J Pharm. Biomed. Anal. 1999, 20 (3), 591–598. https://doi.org/10.1016/S0731-7085(99)00059-X
Wen, A.; Hang, T.; Chen, S.; Wang, Z.; Ding, L.; Tiam, Y.; Zhang, M.; Xu, X. Simultaneous determination of amoxicillin and ambroxol in human plasma by LC-MS/MS: Validation and application to pharmacokinetic study. J. Pharm. and Biomed. Anal. 2008, 48 (3), 829–834. https://doi.org/10.1016/j.jpba.2008.05.032
Wilson, O. C.; Ole, G.; Delgado, N. J. Textbook of organic medicinal and pharmaceutical chemistry; Lippincott Williams and Wilkins, 2004.