Determination of amoxicillin: A penicillin antibiotic in pharmaceutical dosage samples by spectrophotometric method

Main Article Content

Chand Pasha

Abstract

New coupling agents such as 2,4-toluene diamine or sulphanilamide for the determination of amoxicillin spectrophotometrically are described. These methods are straightforward based on the reaction of amoxicillin with diazotized products of 2,4-toluene diamine or sulphanilamide to produce coloured azo dyes with maximum absorption at 462 or 468 nm. Amoxicillin responds linearly from 1.2–24.8 or 1.8–32.0 mg mL–1 when coupled with diazotized 2,4-toluene diamine or sulphanilamide. The molar absorptivity and Sandell’s sensitivity of amoxicillin with 2,4-toluene diamine or amoxicillin with sulphanilamide azo dyes were 3.307 × 104 or 2.632 × 104 L mol–1 cm–1 and 1.105×10-2 or 1.388×10-2 mg cm-2, respectively. The regression equation, correlation coefficient (R2), detection limit and quantitation limit of amoxicillin with 2,4-toluene diamine or amoxicillin with sulphanilamide were evaluated. The percentage recoveries ranged from 97.00 to 100.50 with a relative standard deviation value was ± 0.98 to ± 1.85%. The method does not need temperature control or solvent extraction and has been applied successfully to determine amoxicillin in pharmaceutical preparation (tablets).

Metrics

Metrics Loading ...

Article Details

How to Cite
Pasha, C. (2024). Determination of amoxicillin: A penicillin antibiotic in pharmaceutical dosage samples by spectrophotometric method. Eclética Química, 49, e–1484. https://doi.org/10.26850/1678-4618eq.v49.2024.e1484
Section
Original articles

References

Ahmed, A. S.; Rahman, N.; Islam, F. Spectrophotometric determination of ampicillin, amoxicillin, carbenicillin using folin ciocalteu phenol reagent. Anal. Chem. 2004, 59, 119–123. https://doi.org/10.1023/B:JANC.0000014736.59554.5c

Al-Abachi, M. Q.; Haddi, H.; Al-Abachi, A. M. Spectrophotometric determination of amoxicillin by reaction with N,N-dimethyl-p-phenylenediamine and potassium hexacyanoferrate(III). Anal. Chim. Acta. 2005, 554 (1–2), 184–189. https://doi.org/10.1016/j.aca.2005.08.030

Aliev, A. M.; Babazade, G. M. Comparative study of quantitative determination of amoxicillin in capsules by mercurimetry and liquid chromatography. Pharm. Chem. J., 2011, 45, 257–260. https://doi.org/10.1007/s11094-011-0610-2

Al-Uzri, W. A. Spectrophotometric determination of amoxicillin in pharmaceutical preparations through diazotization and coupling reaction. Iraqi Journal of Science. 2012, 53 (4), 713–722.

Amoxicillin. The American Society of Health-System Pharmacists. Archived from the original on 5 September 2015. Retrieved, 1 August 2015.

Asan, A.; Seddiq, N. A simple spectrophotometric determination of amoxicillin in Drug samples. J. Turk. Chem. Soc. 2022, 9 (2), 423–432. https://doi.org/10.18596/jotcsa.978686

Blumberg, P. M.; Strominger, J. L. Interaction of penicillin with the bacterial cell: penicillin–binding proteins and penicillin–sensitive enzymes. Bacterial Rev. 1974, 38 (3) 291–335. https://doi.org/10.1128/br.38.3.291-335.1974

Boix, C.; Ibáñez, M.; Bagnati, R.; Zuccato, E.; Sancho, J. V.; Hernández, F.; Castiglioni, S. High-resolution mass spectrometry to investigate omeprazole and venlafaxine metabolites in wastewater. J. Hazard. Mater. 2016, 302, 332–340. https://doi.org/10.1016/j.jhazmat.2015.09.059

Dinh, Q. T.; Alliot, F.; Moreau-Guigona, E.; Eurina, J.; Chevreuil, M.; Labadie, P. Measurement of trace levels of antibiotics in river water using online enrichment and triple-quadrupole. Talanta. 2011, 85 (3), 1238–1245. https://doi.org/10.1016/j.talanta.2011.05.013

Elshafie, F. S.; Gad-Kariem, E. A.; Al-Rashood, K. A.; Al-Khamees, H. A.; El-Obeid, H. A. Colourimetric method for the determination of ampicillin and amoxicillin. Anal. Lett. 1996, 29 (3), 381–393. https://doi.org/10.1080/00032719608000405

Ergin, M. F.; Yasa, H. Determination of amoxicillin trihydrate impurities 4-hydroxyphenylglycine (4-HPG) and 6-Aminopenicylanic acid (6-APA) by means of ultraviolet spectroscopy. Methods Appl Fluoresc, 2022, 10 (3), 25–32. https://doi.org/10.1088/2050-6120/ac7037

Fabregat-Safont, D.; Elena, P.; Lubertus, B.; Ionut, M.; Félix, H. Rapid and sensitive analytical method for the determination of amoxicillin and related compounds in water meeting the requirements of the European union watch list David. J. Chromatogr. B. 2021, 1658, 462605. https://doi.org/10.1016/j.chroma.2021.462605

Fonseca, E.; Hernández, F.; Ibáñez, M.; Rico, A.; Pitarch, E.; Bijlsma, L. Occurrence and ecological risks of pharmaceuticals in a Mediterranean river in Eastern Spain. Environ. Int. 2020, 144, 106004. https://doi.org/10.1016/j.envint.2020.106004

Foroutan, S. M.; Zarghi, A.; Shafaati, A.; Khoddam, A.; Movahed, H. Simultaneous determination of amoxicillin and clavulanic acid in human plasma by isocratic reversed-phase HPLC using UV detection. J. Pharm. and Biomed. Anal. 2007, 45 (3), 531–534. https://doi.org/10.1016/j.jpba.2007.06.019

Fouladgar, M.; Hadjmohammadi, M. R.; Khalilzadeh, M. A.; Biparva, P.; Teymoori, N.; Beitollah, H. Voltammetric determination of amoxicillin at the electrochemical sensor ferrocene dicarboxylic acid multi-wall carbon nanotubes paste electrode. Int. J. Electrochem. Sci. 2011, 6 (5), 1355–1366. https://doi.org/10.1016/S1452-3981(23)15079-6

Hailekiros, G.; Getu, K.; Tadele, E.; Tesfamichael, G. A validated new RP-HPLC method for simultaneous determination of amoxicillin, ampicillin and cloxacillin in pharmaceutical formulations. Acta Chromatographica. 2022, 35 (2), 193–203. https://doi.org/10.1556/1326.2022.01043

Hernández, F.; Ibáñez, V.; Portolés, T.; Cervera, M. I.; Sancho, J. V.; López, F. J. Advancing towards universal screening for organic pollutants in waters. J. Hazard. Mater. 2015, 282, 86–95. https://doi.org/10.1016/j.jhazmat.2014.08.006

Jalal, M. T. Spectrophotometric determination of amoxicillin trihydrate in pharmaceutical preparation. HIV Nursing. 2023, 23 (2), 140–147. https://doi.org/10.31838/hiv23.02.24

Li, Y.; Tang, Y.; Yao, H.; Fu, J. Determination of ampicillin and amoxicillin by flow injection chemiluminescence method based on their enhancing effects on the luminal-periodate reaction. Luminescence. 2003, 18 (6), 313–317. https://doi.org/10.1002/bio.741

Mahmoud, I. M.; Rafat, N. M.; Monzer, A.; Naser, E. S.; Rafik, H. S.; Akila, S. A. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxicillin and diclofenac sodium in pharmaceutical formulations. J. Serb. Chem. Soc. 2008, 73 (5), 569–576. https://doi.org/10.2298/JSC0805569I

Muñoz de la Peña, A.; Acedo-Valenzuela, M. I.; Espinosa-Mansilla, A.; Sánchez Maqueda, R. Stopped-flow fluorimetric determination of amoxycillin and clavulanic acid by partial least-squares multivariate calibration. Talanta. 2002, 56 (4), 635–642. https://doi.org/10.1016/S0039-9140(01)00612-9

Oliva, D. C.; Velez, K. T.; Vazquez, A. L. R. Simultaneous determination of bromhexine and amoxicillin in pharmaceutical formulations by capillary electrophoresis. J. Mex. Chem. Soc. 2011, 55 (2), 79–83.

Othman, N. S.; Al-Saffar, R. S. Spectrophotometric determination of amoxicillin in pharmaceutical preparations. Intern. J. Enhanced Res. Sci. Tech. Eng. 2015, 4 (6) 167–173. https://doi.org/10.13140/RG.2.2.22557.05604

Quanmin, L.; Zhanjun, Y. Study of spectrophotometric determination of amoxicillin using sodium 1,2-naphthoquinone-4-sulfonate as the chemical derivative chromogenic reagent. Anal. Lett. 2006, 39 (4), 763–775. https://doi.org/10.1080/00032710600611525

Rao, G. R.; Mohan, K. R. Colorimetric method for estimation of amoxicillin and the dosage form. Ind. Drugs. 1982, 19, 326-337.

Rossmann, J.; Schubert, S.; Gurke, R.; Oertel, R.; Kirch, W. Simultaneous determination of most prescribed antibiotics in multiple urban wastewaters by SPE-LC–MS/MS. J. Chromatogr. B. 2014, 969, 162–170. https://doi.org/10.1016/j.jchromb.2014.08.008

Santos, D. P.; Bergamini, M. F.; Zanoni M. V. B. Voltammetric sensor for amoxicillin determination in human urine using Polyglutamic acid/glutaraldehyde film. Sensors and Actuators B: Chemical. 2008, 133 (2), 398–403. https://doi.org/10.1016/j.snb.2008.02.045

Singh, D. K.; Maheshwari, G. Spectrophotometric determination of penicillins in pure and pharmaceutical formulations using folin-ciocalteu reagent. Drug test. and Anal. 2010, 2 (10), 503–506. https://doi.org/10.1002/dta.157

European Centre for Disease Prevention and Control (ECDC). Antimicrobial consumption in the EU/EEA – Annual Epidemiological Report 2019. ECDC, 2020. https://www.ecdc.europa.eu/sites/default/files/documents/Antimicrobial-consumption-in-the-EU-Annual-Epidemiological-Report-2019.pdf (accessed 2023-10-20).

Sun, Y.; Tang, Y.; Yao, H.; Li, Y. Flow injection chemiluminescence analysis of some penicillins by their sensitizing effect on the potassium permanganate-glyoxal reaction. Anal. Sci. 2005, 21, 457–460. https://doi.org/10.2116/analsci.21.457

Ünal, K.; Palabiyik, I. M.; Karacan, E.; Onur, F. Spectrophotometric determination of amoxicillin in pharmaceutical formulations. Turk. J. Pharm. Sci. 2008, 5 (1), 1–16.

Uslu, B.; Biryol, I. Voltammetric determination of amoxicillin using a poly (N-vinyl imidazole) modified carbon paste electrode. J Pharm. Biomed. Anal. 1999, 20 (3), 591–598. https://doi.org/10.1016/S0731-7085(99)00059-X

Wen, A.; Hang, T.; Chen, S.; Wang, Z.; Ding, L.; Tiam, Y.; Zhang, M.; Xu, X. Simultaneous determination of amoxicillin and ambroxol in human plasma by LC-MS/MS: Validation and application to pharmacokinetic study. J. Pharm. and Biomed. Anal. 2008, 48 (3), 829–834. https://doi.org/10.1016/j.jpba.2008.05.032

Wilson, O. C.; Ole, G.; Delgado, N. J. Textbook of organic medicinal and pharmaceutical chemistry; Lippincott Williams and Wilkins, 2004.