Synthesis of some new substituted imines from aldehydes and ketones derived from quinolinic acid

Main Article Content

Anwar Abdulghani Fathi
Yassir Shakeeb Al Jawaheri
Shaimaa Samir Ismaeel

Abstract

In this paper, some substituted imines compounds have been prepared from quinolinic acid as a starting material. Firstly, the quinolinic acid was treated with acetic anhydride and acetic acid to form furo[3,4-b]pyridine-5,7-dione (1); the resulting compound was heated with urea to form 5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione (2). After that, it was treated with potassium hydroxide to give potassium 5,7-dioxo-5,7-dihydropyrrolo[3,4-b]pyridin-6-dione, which was directly and easily converted to 6-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-5H-pyrrolo[3,4-b]pyridine-5,7(6H)-dione (3) by the reaction with 1-([1,1'-biphenyl]-4-yl)-2-bromoethan-1-one. Finally, the resultant compound reacted with substituted aniline to give imines (4, 5). Secondly the quinolinic acid converted to 4-(5,7-dioxo-5,7-dihydro-6H-pyrrolo[3,4-b] pyridin-6-yl) benzenesulfonyl chloride according to our previous work, then treated with p-hydroxy acetophenone or p-hydroxy benzaldehyde to form 4-substituted bezyloxy 4-(5,7-dioxo-5,7-dihydro-6H-pyrrolo[3,4-b] pyridine-6-yl) benzenesulfonate (6, 7), which were finally treated with substituted aniline to form new substituted imines (8–12).

Metrics

Metrics Loading ...

Article Details

How to Cite
Fathi, A. A., Al Jawaheri, Y. S., & Ismaee, S. S. (2023). Synthesis of some new substituted imines from aldehydes and ketones derived from quinolinic acid. Eclética Química, 48(2), 49–65. https://doi.org/10.26850/1678-4618eqj.v48.2.2023.p49-65
Section
Original articles
Author Biography

Shaimaa Samir Ismaeel, Mosul University, College of Education and Pure Science, Mosul, Iraq.

 

 

References

Aliabadi, A.; Foroumadi, A.; Mohammadi-Farani, A; Mahvar, M. G. Synthesis and Evaluation of Anti-acetylcholinesterase Activity of 2-(2-(4-(2-Oxo-2-phenylethyl) piperazin-1-yl) ethyl)Isoindoline-1,3-dione Derivatives with Potential Anti-Alzheimer Effects. Iran J. Basic Med. Sci. 2013, 16 (10), 1049–1054.

Altaee, E. A.; Al-Sabawi, A. H. Synthesis and Spectral Study of Some New 4-substituted but-2-enolide Derivatives. Egypt. J. Chem. 2021, 64 (12), 7117–7122. https://doi.org/10.21608/ejchem.2021.80154.3957

Bashiri, M.; Jarrahpour, A.; Rastegari, B.; Iraji, A.; Irajie, C.; Amirghofran, Z.; Malek-Hosseini, S.; Motamedifar, M.; Haddadi, M.; Zomorodian, K.; Zareshahrabadi, Z.; Turos, E. Synthesis and evaluation of biological activities of tripodal imines and β-lactams attached to the 1,3,5-triazine nucleus. Monatsh Chem. 2020, 151 (5), 821–835. https://doi.org/10.1007/s00706-020-02592-8

Cai, Y.-H. Solvent-Free Synthesis of Phthalimide Under Microwave Irradiation and Modification of Talc with Synthesized Phthalimide. Asian J. Chem. 2012, 24 (2), 481–484.

Chan, K. K.; Wong, Y. F.; Yang, D.; Pettus, T. R. R. Nucleophilic Imines and Electrophilic o-Quinone Methides, a Three-Component Assembly of Assorted 3,4-Dihydro-2H-1,3-benzoxazines. Org. Lett. 2019, 21 (19), 7746–7749. https://doi.org/10.1021/acs.orglett.9b02655

Choudhury, L. H.; Parvin, T. Recent advances in the chemistry of imine-based multicomponent reactions (MCRs). Tetrahedron, 2011, 67 (43), 8213–8228. https://doi.org/10.1016/j.tet.2011.07.020

Fadlelmoula, A.; Pinho, D.; Carvalho, V. H.; Catarino, S. O.; Minas, G. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines, 2022, 13 (2), 187. https://doi.org/10.3390/mi13020187

Fathi, A. A.; Al-Jawaheri, Y. S. M. Synthesis and characterization of new N- Aryl sulfonyl hydrazone compounds. Egypt. J. Chem. 2022, 65 (3), 179–183. https://doi.org/10.21608/ejchem.2021.90637.4320

Hania, M. M. Synthesis of Some Imines and Investigation of their Biological Activity. J. Chem. 2009, 6 (3), 629–632. https://doi.org/10.1155/2009/104058

Jasril, J.; Ikhtiarudin, I.; Nurulita, Y.; Nurisma. Microwave-assisted synthesis and antioxidant activity of an imine, (E)-1-(3-bromobenzylidene)-2-phenylhydrazine. AIP Conf. Proc. 2020, 2242, 040041. https://doi.org/10.1063/5.0009374

Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 2013, 893512. https://doi.org/10.1155/2013/893512

Maimaris, M.; Pettipher, A. J.; Azzouzi, M.; Walke, D. J.; Zheng, X.; Gorodetsky, A.; Dong, Y.; Tuladhar, P. S.; Crespo, H.; Nelson, J.; Tisch, J. W. G.; Bakulin, A. A. Sub-10-fs observation of bound exciton formation in organic optoelectronic devices. Nat. Commun. 2022, 13, 4949. https://doi.org/10.1038/s41467-022-32478-8

Rapolu, R. K.; Areveli, S.; Raju, V. V. N. K. V. P.; Navuluri, S.; Chavali, M.; Mulakayala, N. An Efficient Synthesis of Darunavir Substantially Free from Impurities: Synthesis and Characterization of Novel Impurities. ChemistrySelect. 2019, 4 (14), 4422–4427. https://doi.org/10.1002/slct.201803825

Silva, E. T.; Araújo, A. S.; Moraes, A. M.; Souza, L. A.; Lourenço, M. C. S.; Souza, M. V. N.; Wardell, J. L.; Wardell, S. M. S. V. Synthesis and Biological Activities of Camphor Hydrazone and Imine Derivatives. Sci. Pharm. 2016, 84 (3), 467–483. https://doi.org/10.3390/scipharm84030467

Soyer, Z.; Uysal, S.; Parlar, S.; Dogan, A. H. T.; Alptuzun, V. Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 32 (1), 13–19. https://doi.org/10.1080/14756366.2016.1226298

Yin, Y.; Zhao, X.; Jiang, Z. Advances in the Synthesis of Imine-Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem. 2020, 12 (18), 4471–4489. https://doi.org/10.1002/cctc.202000741