Comparative study of benznidazole encapsulation in boron nitride and carbon nanotubes: A quantum chemistry study

Main Article Content

Jeziel Rodrigues dos Santos
Osmair Vital de Oliveira
Rafael Giordano Viegas
José Divino dos Santos
Elson Longo

Abstract

Quantum chemistry methods were used to study boron nitride and carbon nanotubes as possible carriers of antichagasic benznidazole to improve their water solubility and bioavailability. Structurally, no significant changes were observed in both nanotubes throughout the encapsulation process. For the BNZ@BNNT complex, it was possible to notice short interactions, at 0.215 nm, between the hydrogen atoms of the BNZ and the nitrogen atoms of the BNNT. The binding energy reveals that both nanotubes are capable of encapsulating BNZ in an aqueous medium, with values of –71.79 and –62.68 kcal/mol for the BNZ@BNNT and BNZ@CNT complexes. The enthalpy of solvation indicates that the complexes are soluble in water with values of –32.35 and –28.76 kcal mol–1 for the BNZ@BNNT and BNZ@CNT complexes. Regarding chemical stability, Eg and η show that BNZ@BNNT has greater stability (Eg/η of 3.35/1.68 eV) than BNZ@CNT (0.16/0.08 eV). Overall, our results demonstrate that BNNT is a better candidate to be used as a carrier of BNZ than CNT due to its greater structural and chemical stability.

Metrics

Metrics Loading ...

Article Details

How to Cite
Santos, J. R. dos, Oliveira, O. V. de, Viegas, R. G., Santos, J. D. dos, & Longo, E. (2022). Comparative study of benznidazole encapsulation in boron nitride and carbon nanotubes: A quantum chemistry study. Eclética Química, 47(1SI), 50–56. https://doi.org/10.26850/1678-4618eqj.v47.1SI.2022.p50-56
Section
Original articles

References

Anzar, N.; Hasan, R.; Tyagi, M.; Yadav, N.; Narang, J. Carbon nanotube: A review on synthesis, properties and plethora of applications in the field of biomedical science. Sensors Int. 2020, 1, 100003. https://doi.org/10.1016/j.sintl.2020.100003

Azarakhshi, F.; Sheikhi, M.; Shahab, S.; Khaleghian, M.; Sirotsina, K.; Yurlevich, H.; Novik, D. Investigation of encapsulation of Talzenna drug into carbon and boron-nitride nanotubes [CNT(8,8-7) and BNNT(8,8-7)]: A DFT study. Chem. Pap. 2021, 75, 1521–1533. https://doi.org/10.1007/s11696-020-01407-8

Ciofani, G. Potential applications of boron nitride nanotubes as drug delivery systems. Expert Opin. Drug Deliv. 2010, 7 (8), 889–893. https://doi.org/10.1517/17425247.2010.499897

Coura, J. R.; Castro, S. L. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz 2002, 97 (1), 3–24. https://doi.org/10.1590/S0074-02762002000100001

Dehaghani, M. Z.; Bagheri, B.; Nasiriasayesh, A.; Mashhadzadeh, A. H.; Zarrintaj, P.; Rabiee, N.; Bagherzadeh, M.; Habibzadeh, S.; Abida, O.; Saeb, M. R.; Jang, H. W.; Shokouhimehr, M. Insight into the self-insertion of a protein inside the boron nitride nanotube. ACS Omega 2020, 5 (49), 32051–32058. https://doi.org/10.1021/acsomega.0c05080

Dutra, L. M.; Oliveira, O. V.; Santos, J. D. Computational studies on the encapsulation of 1,4-dihydropyridine derivatives into CNT(10,10). Aust. J. Chem. 2017, 70 (3), 252–257. https://doi.org/10.1071/CH16165

Fairlamb, A. H. Future prospects for the chemotherapy of Chagas’ disease. Medicina (B. Aires) 1999, 59 (Suppl. 2), 179–187.

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104. https://doi.org/10.1063/1.3382344

Khaleghian, M.; Azarakhshi, F. Theoretical modelling of encapsulation of the Altretamine drug into BN(9,9-5) and AlN(9,9-5) nano rings: A DFT study. Mol. Phys. 2019, 117 (18), 2559–2569. https://doi.org/10.1080/00268976.2019.1574987

Kim, J. H.; Pham, T. V.; Hwang, J. H.; Kim, C. S.; Kim, M. J. Boron nitride nanotubes: Synthesis and applications. Nano Convergence 2018, 5, 17. https://doi.org/10.1186/s40580-018-0149-y

Koopmans, T. Über Die Zuordnung von Wellenfunktionen Und Eigenwerten Zu Den Einzelnen Elektronen Eines Atoms. Physica 1934, 1 (1–6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2

Lobo, J. A. P.; Santos, J. R.; Oliveira, O. V.; Silva, E. L.; Santos, J. D. Theoretical study of greenhouse gases on the zirconium oxide nanotube surface. Chem. Phys. Lett. 2020, 745, 137236. https://doi.org/10.1016/j.cplett.2020.137236

Lyra, M. A. M.; Soares-Sobrinho, J. L.; Figueiredo, R. C. B. Q.; Sandes, J. M.; Lima, Á. A. N.; Tenório, R. P.; Fontes, D. A. F.; Santos, F. L. A.; Rolim, L. A.; Rolim-Neto, P. J. Study of benznidazole-cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. J. Incl. Phenom. Macrocycl. Chem. 2012, 73, 397–404. https://doi.org/10.1007/s10847-011-0077-5

Mahdavifar, Z.; Moridzadeh, R. Theoretical prediction of encapsulation and adsorption of platinum-anticancer drugs into single walled boron nitride and carbon nanotubes. J. Incl. Phenom. Macrocycl. Chem. 2014, 79, 443–457. https://doi.org/10.1007/s10847-013-0367-1

Melo, P. N.; Barbosa, E. G.; De Caland, L. B.; Carpegianni, H.; Garnero, C.; Longhi, M.; Fernades-Pedrosa, M. F.; Silva-Júnior, A. A. Host-guest interactions between benznidazole and beta-cyclodextrin in multicomponent complex systems involving hydrophilic polymers and triethanolamine in aqueous solution. J. Mol. Liq. 2013, 186, 147–156. https://doi.org/10.1016/j.molliq.2013.07.004

Morilla, M. J.; Benavidez, P.; Lopez, M. O.; Bakas, L.; Romero, E. L. Development and in vitro characterisation of a benznidazole liposomal formulation. Int. J. Pharm. 2002, 249 (1–2), 89–99. https://doi.org/10.1016/S0378-5173(02)00453-2

Oliveira, E. C. V; Carneiro, Z. A.; Albuquerque, S.; Marchetti, J. M. Development and evaluation of a nanoemulsion containing Ursolic acid: A promising trypanocidal agent: Nanoemulsion with ursolic acid against T. Cruzi. AAPS PharmSciTech 2017, 18, 2551–2560. https://doi.org/10.1208/s12249-017-0736-y

Oliveira, O. V.; Viegas, R. G. Cucurbit[7]uril as a possible nanocarrier for the antichagasic benznidazole: A computational approach. J. Incl. Phenom. Macrocycl. Chem. 2020, 98 (1–2), 93–103. https://doi.org/10.1007/s10847-020-01014-w

Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. 6-31G* basis set for third-row atoms. J. Comput. Chem. 2001, 22 (9), 976–984. https://doi.org/10.1002/jcc.1058

Rathod, V.; Tripathi, R.; Joshi, P.; Jha, P. K.; Bahadur, P.; Tiwari, S. Paclitaxel encapsulation into dual-functionalized multi-walled carbon nanotubes. AAPS PharmSciTech 2019, 20, 51. https://doi.org/10.1208/s12249-018-1218-6

Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83 (2), 735. https://doi.org/10.1063/1.449486

Santos, J. R.; Silva, E. L.; Oliveira, O. V.; Santos, J. D. Theoretical study of sarin adsorption on (12,0) boron nitride nanotube doped with silicon atoms. Chem. Phys. Lett. 2020, 738, 136816. https://doi.org/10.1016/j.cplett.2019.136816

Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 114110. https://doi.org/10.1063/1.3359469

Schaftenaar, G.; Noordik, J. H. Molden: A pre- and post-processing program for molecular and electronic structures. J. Comput. Aided. Mol. Des. 2000, 14, 123–134. https://doi.org/10.1023/A:1008193805436

Seremeta, K. P.; Arrúa, E. C.; Okulik, N. B.; Salomon, C. J. Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease? Colloids Surf. B Biointerfaces 2019, 177, 169–177. https://doi.org/10.1016/j.colsurfb.2019.01.039

Serhan, M.; Abusini, M.; Almahmoud, E.; Omari, R.; Al-Khaza’leh, K.; Abu-Farsakh, H.; Ghozlan, A.; Talla, J. The electronic properties of different chiralities of defected boron nitride nanotubes: Theoretical study. Comput. Condens. Matter 2020, 22, e00439. https://doi.org/10.1016/j.cocom.2019.e00439

Shayan, K.; Nowroozi, A. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: A theoretical study. Appl. Surf. Sci. 2018, 428, 500–513. https://doi.org/10.1016/j.apsusc.2017.09.121

Sheikhi, M.; Shahab, S.; Khaleghian, M.; Hajikolaee, F. H.; Balakhanava, I.; Alnajjar, R. Adsorption properties of the molecule resveratrol on CNT(8,0-10) nanotube: Geometry optimization, molecular structure, spectroscopic (NMR, UV/Vis, excited state), FMO, MEP and HOMO-LUMO investigations. J. Mol. Struct. 2018, 1160, 479–487. https://doi.org/10.1016/j.molstruc.2018.01.005

Silva, A. M. S.; Caland, L. B.; Doro, P. N.M; Oliveira, A. L. C. S. L.; de Araújo-Júnior, R. F.; Fernandes-Pedrosa, M. F.; do Egito, E. S. T.; da Silva-Junior, A. A. Hydrophilic and Hydrophobic Polymeric Benznidazole-Loaded Nanoparticles: Physicochemical Properties and in Vitro Antitumor Efficacy. J. Drug Deliv. Sci. Technol. 2019, 51, 700–707. https://doi.org/10.1016/j.jddst.2019.04.005

Soares Sobrinho, J. L.; Soares, M. F. de L. R.; Torres Labandeira, J. J.; Alves, L. D. S.; Rolim Neto, P. J. Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complexes with cyclodextrins. Quim. Nova 2011, 34 (9), 1534–1538. https://doi.org/10.1590/S0100-40422011000900010

Stewart Computational Chemistry; Stewart, J. J. P.: Colorado Springs, 2016. http://openmopac.net/ (accessed 2021-04-14)

Streck, L.; Sarmento, V. H. V.; Menezes, R. P. R. P. B. de; Fernandes-Pedrosa, M. F.; Martins, A. M. C.; da Silva-Júnior, A. A. Tailoring microstructural, drug release properties, and antichagasic efficacy of biocompatible oil-in-water benznidazol-loaded nanoemulsions. Int. J. Pharm. 2019, 555, 36–48. https://doi.org/10.1016/j.ijpharm.2018.11.041

Vermelho, A. B.; Cardoso, V. S.; Ricci Junior, E.; Santos, E. P. dos; Supuran, C. T. Nanoemulsions of sulfonamide carbonic anhydrase inhibitors strongly inhibit the growth of Trypanosoma cruzi. J. Enzyme Inhib. Med. Chem. 2018, 33 (1), 139–146. https://doi.org/10.1080/14756366.2017.1405264.

Vinuesa, T.; Herráez, R.; Oliver, L.; Elizondo, E.; Acarregui, A.; Esquisabel, A.; Pedraz, J. L.; Ventosa, N.; Veciana, J.; Viñas, M. Benznidazole nanoformulates: A chance to improve therapeutics for chagas disease. Am. J. Trop. Med. Hyg. 2017, 97 (5), 1469–1476. https://doi.org/10.4269/ajtmh.17-0044

Wang, Q.; Moriyam, H. Carbon nanotube-based thin films: Synthesis and properties. In Carbon Nanotubes - Synthesis, Characterization, Applications; IntechOpen, 2011; pp 487–514. https://doi.org/10.5772/22021

Xu, H.; Li, L.; Fan, G.; Chu, X. DFT study of nanotubes as the drug delivery vehicles of Efavirenz. Comput. Theor. Chem. 2018, 1131, 57–68. https://doi.org/10.1016/j.comptc.2018.03.032

Zaboli, M.; Raissi, H.; Zaboli, M. Investigation of nanotubes as the smart carriers for targeted delivery of mercaptopurine anticancer drug. J. Biomol. Struct. Dyn. 2020, 1–14. https://doi.org/10.1080/07391102.2020.1860823