Bioadsorption of lead(II) over the pulp of Acrocomia aculeata

Main Article Content

Alexandra Novak
Fátima Yubero
Diana Diez-Pérez-Núñez
Fernando Luis Fertonani
Brenda Gisselle Da Silva Britez
Yenny Gonzalez

Abstract

The adsorption of lead in aqueous solution onto Acrocomia aculeata pulp was examined. The pulp was characterized in the presence and absence of lead using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG-DTA), and scanning electron microscopy (SEM). Sulfur and oxygen bonds were responsible for adsorbing lead onto the pulp surface. The TG-DTA profile proved that adding sodium azide increases the pulp’s thermal stability until 200 °C. Adsorption data in batch and column systems were analyzed to understand the pulp adsorption compared to other biomaterials. In the batch experiments, the removal efficiency reached a maximum of 91.9% when a solution of 50 ppm of lead was placed in contact with the pulp for 30 min and fit Freundlich isotherm behavior. In the column experiments, the theoretical maximum adsorption capacity was found to be 11.97 mg g–1; more column data is needed to compare column results to other studies. Further studies to improve the pulp adsorption capacity are needed for it to be a competitive biomaterial for water treatment.

Metrics

Metrics Loading ...

Article Details

How to Cite
Novak, A., Yubero, F., Diez-Pérez-Núñez, D., Fertonani, F. L., Britez, B. G. D. S., & Gonzalez, Y. (2021). Bioadsorption of lead(II) over the pulp of Acrocomia aculeata. Eclética Química, 46(4), 38–46. https://doi.org/10.26850/1678-4618eqj.v46.4.2021.p38-46
Section
Original articles

References

Cardwell, R. D.; DeForest, D. K.; Brix, K. V.; Adams, W. J. Do Cd, Cu, Ni, Pb, and Zn biomagnify in aquatic ecosystems. In Reviews of Environmental Contamination and Toxicology; Springer, 2013; pp 101–122. https://doi.org/10.1007/978-1-4614-6898-1_4

Chang, R. Physical chemistry with applications to biological systems; Collier Macmillan, 1981.

Corrêa, A. C.; Carmona, V. B.; Simão, J. A.; Galvani, F.; Marconcini, J. M.; Mattoso, L. H. C. Cellulose Nanocrystals from Fibers of Macauba (Acrocomia Aculeata) and Gravata (Bromelia Balansae) from Brazilian Pantanal. Polymers 2019, 11 (11), 1785. https://doi.org/10.3390/polym11111785

Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: a review with recent updates. Interdiscip. Toxicol. 2012, 5 (2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

Fujimoto, Y.; Ando, T.; Morisaki, S. Thermal stability of sodium azide. Azi ka natorium no netsu anteisei. Kogyo Kayaku 1990, 51 (3), 148–156.

González, Y.; García, M. G.; Arrúa, R. D.; López, M.; Bernal, C.; Ayala, J.; Yubero, F. Morfología, anatomía estructural y actividad lipasa de la pulpa de “coco”, Acrocomia aculeata (Jacq) Lodd. ex Mart. (Arecaceae) en función al tiempo de colecta. Rojasiana 2018, 17 (1), 73–80.

Goyer, R. A. Lead toxicity: current concerns. Environ. Health Perspect. 1993, 100, 177–187. https://doi.org/10.1289/ehp.93100177

Gunatilake, S. K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1 (1), 12–18.

Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B. B.; Beeregowda, K. N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7 (2), 60–72. https://doi.org/10.2478/intox-2014-0009

Kessler, R. Lead-based decorative paints: where are they still sold—and why? Environ. Health Perspect. 2014, 122 (4), A97–A103. https://doi.org/10.1289/ehp.122-A96

Li, Q.; Zhai, J.; Zhang, W.; Wang, M.; Zhou, J. Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. J. Hazard. Mater. 2007, 141 (1), 163–167. https://doi.org/10.1016/j.jhazmat.2006.06.109

World Health Organization. Guías para la calidad del agua potable; WHO, 2006. https://www.who.int/water_sanitation_health/dwq/gdwq3_es_fulll_lowsres.pdf (accessed 2021-31-08).

Pehlivan, E.; Altun, T.; Cetin, S.; Bhanger, M. I. Lead sorption by waste biomass of hazelnut and almond shell. J. Hazard. Mater. 2009, 167 (1–3), 1203–1208. https://doi.org/10.1016/j.jhazmat.2009.01.126

Plath, M.; Moser, C.; Bailis, R.; Brandt, P.; Hirsch, H.; Klein, A.-M.; Walmsley, D.; von Wehrden, H. A novel bioenergy feedstock in Latin America? Cultivation potential of Acrocomia aculeata under current and future climate conditions. Biomass Bioenergy 2016, 91, 186–195. https://doi.org/10.1016/j.biombioe.2016.04.009

Poetsch, J.; Haupenthal, D.; Lewandowski, I.; Oberländer, D., Hilger, T. Acrocomia aculeata – a sustainable oil crop. Rural 2012, 21 (3), 41–44.

Roman, C. J. C. Análisis de um sub-sector de la industria de Productos no Maderables del Bosque (PNMB) del Paraguay. Kaàguy Revista Forestal del Paraguay 1996, 12 (1), 41–47.

Silva, R. J. N. B. Spreadsheet for designing valid least-squares calibrations: A tutorial. Talanta. 2016, 148, 177–190. https://doi.org/10.1016/j.talanta.2015.10.072

Singanan, M. Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon. Science Asia 2011, 37, 115–119. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115

Stefan, D. S.; Belcu, M.; Stefan, M.; Marinescu, I. A. Sorption of Hg2+ and Pb2+ ions from aqueous solutions on corn cobs biomaterials. Rev. Chim. 2010, 61 (1), 31–35.

Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer, 2012; pp 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

Tong, S.; von Schirnding, Y. E.; Prapamontol, T. Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ. 2000, 78 (9), 1068–1077.

Wang, X.; Wang, L.; Wang, Y.; Tan, R.; Ke, X.; Zhou, X.; Geng, J.; Hou, H.; Zhou, M. Calcium sulfate hemihydrate whiskers obtained from flue gas desulfurization gypsum and used for the adsorption removal of lead. Crystals 2017, 7 (9), 270. https://doi.org/10.3390/cryst7090270

Yubero, F.; Ayala, J.; López, M.; Valdovinos, V.; Bernal, C.; González, Y. Polvo insoluble de pulpa de coco (Acrocomia aculeata) como biocatalizador. In XXV Congreso Iberoamericano de Catálisis (CICat 2016), Montevideo, Uruguay, September 18–23, 2016a.

Yubero, F.; Ayala, J.; Lopez, M., Valdovinos, V.; Monteiro, M.; Gonzalez, Y.; Thompson, W.; Arguello, J. Physicochemical characteristics of the coconut pulp (Acrocomia aculeata) for use as support of proteins and metal material. In 22 Congreso Brasilero de Ingenieria y Ciencia de los Materiales (CBCIMAT 2016), Natal, Brazil, November 6–10, 2016b.

Yubero, F.; Oviedo, C.; Arango, M. Biomateriales de fuentes naturales para la retención de Cromo (VI). Rev. Soc. Cient. Parag. 2015, 20 (2), 135–143.

Zulkali, M. M. D.; Ahmad, A. L.; Norulakmal, N. H.; Sharifah, N. S. Comparative studies of Oryza sativa L. husk and chitosan as lead adsorbent. J. Chem. Technol. Biotechnol. 2006, 81 (7), 1324–1327. https://doi.org/10.1002/jctb.1429