Grain-size mineral analysis of verdete rock coarse and fine aggregates and adjustment to two granulometric distribution models
Main Article Content
Abstract
The supremacy of the mineral industry added to the necessity to supply the world market demand justifies the continuous research efforts for optimizing of the activities of mineral resource utilization. In an approach of mineral characterization, a grain-size analysis study of coarse and fine aggregates of verdete rock was presented in this work. The particle size distribution (PSD) of two samples of aggregates with granulometry < 2.36 mm was experimentally obtained using sieving techniques and adjustment to Rosin-Rammler-Bennet (RRB) and Gates-Gaudin-Schuhmann (GGS) granulometric distribution models. Both RRB and GGS models regressed well to the experimental data, presenting correlation coefficient values were extremely close between them approximately 0.99. The PSD’s results indicated that 65.97% dry aggregates and 67.68% wet aggregates had a particle size with mean diameter > 0.0050 mm; a similar behavior of the grain-size distributions presented by dry and wet aggregates; and a tiny presence of fine particles natural in the analyzed ore sample. The results suggested the suitability of the methodology to predict the grain-size performance the verdete ore beyond to show itself as a contribution to the enriching of the mineral characterization of the studied rock, as a potassium potential source for the mineral processing Brazilian industry.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Ahmed, M. M., A contribution to new measure for evaluation of a particle size distribution, Mineral Processing and Extractive Metallurgy: Transactions of the Institution of Mining and Metallurgy: Section C 116 (4) (2007) 221-230. http://doi.org/10.1179/174328507X198726.
Bolaji, O. T., Awonorin, S. O., Sanni, L. O., Shittu, T. A., Adewumi, J. K., Modeling of particle size distribution and energy consumption of wet milled maize at varying soaking period and method in the production of Ogi, Particulate Science and Technology 37 (1) (2017) 94-102. https://doi.org/10.1080/02726351.2017.1343882.
Petrakis, E., Stamboliadis, E., Komnitsas, K., Evaluation of the relationship between energy input and particle size distribution in comminution with the use of piecewise regression analysis, Particulate Science and Technology 35 (4) (2016) 479-489. https://doi.org/10.1080/02726351.2016.1168894.
Kimura, S., Ito, T., Minagawa, H., Grain-size analysis of fine and coarse non-plastic grains: comparison of different analysis methods, Granular Matter 20 (3) (2018) 1-15. https://doi.org/10.1007/s10035-018-0820-3.
Savitha, HG., Manohar, B., Studies on grinding and extraction of oil from fenugreek (Trigonella foenum-graecum) seed, International Journal of Food Engineering 11 (2) (2015) 275-283. https://doi.org/10.1515/ijfe-2014-0262.
Miranda, M. R., Cardoso, C. R., Ataíde, C. H., Physical and chemical characterization of sorghum bagasse, Materials Science Forum 727-728 (2012) 1683-1688. https://doi.org/10.4028/www.scientific.net/MSF.727-728.1683.
Liu, S., Li, Q., Song, J., Study on the grinding kinetics of copper tailing powder, Powder Technology 330 (2018) 105-113. https://doi.org/10.1016/j.powtec.2018.02.025.
Castro, A. M., Castilho, L. R., Freire, D. M. G., Characterization of babassu, canola, castor seed and sunflower residual cakes for use as raw materials for fermentation processes, Industrial Crops and Products 83 (2016) 140-148. https://doi.org/10.1016/j.indcrop.2015.12.050.
Cho, J., Sohn, H. Y., Effects of particle shape and size distribution on the overall fluid-solid reaction rates of particle assemblages, The Canadian Journal of Chemical Engineering 94 (8) (2016) 1516-1523. https://doi.org/10.1002/cjce.22533.
Singh, M., Kumar, S., Kumar, S., Nandan, G., Gupta, M., Characterization of iron-ore suspension at in-situ conditions, Materials today: proceedings 5 (9) (2018) 17845-17851. https://doi.org/10.1016/j.matpr.2018.06.110.
Kacham, A. R., Suri, A. K., Application of a topochemical reaction model to predict leaching behavior of high carbonate uranium ores in alkaline solutions: an experimental case study, Hydrometallurgy 141 (2014) 67-75. https://doi.org/10.1016/j.hydromet.2013.10.005.
Xiong, Y., Wu, B., Zhu, J., Fan, X., Cai, P., Wen, J., Liu, X., Preparation of magnesium hydroxide from leachate of dolomitic phosphate ore with dilute waste acid from titanium dioxide production, Hydrometallurgy 142 (2014) 137-144. https://doi.org/10.1016/j.hydromet.2013.11.013.
Santana, R. C., Ribeiro, J. A., Santos, M. A., Reis, A. S., Ataíde, C. H., Barrozo, M. A. S., Flotation of fine apatitic ore using microbubbles, Separation and Purification Technology 98 (2012) 402-409. https://doi.org/10.1016/j.seppur.2012.06.014.
Taşdemir, A., Taşdemir, T., Comparative study on PSD models for chromite ores comminuted by different devices. Particle and Particle Systems Characterization 26 (1-2) (2009) 69-79. https://doi.org/10.1002/ppsc.200800035.
Piza, P. A. T., Bertolino, L. C., Silva, A. A. D., Sampaio, J. A., Luz, A. B., Verdete da região de Cedro de Abaeté (MG) como fonte alternativa para potássio, Geociências 30 (3) (2011) 345-356. https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/5551.
Santos, W. O., Mattiello, E. M., Costa, L. M., Abrahão, W. A. P., Characterization of verdete rock as a potential source of potassium, Revista Ceres 62 (4) (2015) 392-400. https://doi.org/10.1590/0034-737X201562040009.
Santos, W. O., Mattiello, E. M., Vergutz, L., Costa, R. F., Production and evaluation of potassium fertilizers from silicate rock, Journal of Plant Nutrition and Soil Science 179 (4) (2016) 547-556. https://doi.org/10.1002/jpln.201500484.
Guimarães, D., Geologia do Brasil, Rio de Janeiro, 1964.
Moreira, D. S., Uhlein, A., Fernandes, M. L. S., Mizusaki, A. M., Galéry, R., Delbem, I. D., Estratigrafia, petrografia e mineralização de potássio em siltitos verdes do grupo Bambuí na região de São Gotardo, Minas Gerais, Geociências 35 (2) (2016) 157-171. http://www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/9016/8281.
Silva, A. A. S., Medeiros, M. E., Sampaio, J. A., Garrido, F. M. S., Verdete de Cedro do Abaeté como fonte de potássio: caracterização, tratamento térmico e reação com CaO, Matéria (Rio de Janeiro) 17 (3) (2012) 1062-1074. https://doi.org/10.1590/S1517-70762012000300004.
Silva, A. A., Lana, R. M. Q., Incubação do verdete com diferentes fontes de ácidos para disponibilização de potássio, cálcio, magnésio do solo, Holos 5 (2015) 73-83. https://doi.org/10.15628/holos.2015.3210.
Revista Brasil Mineral, Potássio: Projeto da Kalium opera em novembro, 2018. http://www.brasilmineral.com.br/noticias/projeto-da-kalium-opera-em-novembro.
Kalium Mineração S.A., Projeto Glauconita, KM Kalium Mineração S.A. (2017) 1-41. https://docplayer.com.br/74701318-Km-kalium-mineracao-s-a-projeto-glauconita.html.
Silva, A. A. S., Medeiros, M. E., Sampaio J. A., Garrido, F. M. S., Caracterização do verdete de Cedro do Abaeté para o desenvolvimento de um material com liberação controlada de potássio, Holos 5 (2012) 42-51. https://doi.org/10.15628/holos.2012.1093.
Lima, O. N. B., Uhlein, A., Britto, W., Estratigrafia do grupo Bambuí na Serra da Saudade e geologia do depósito fosfático de Cedro do Abaeté, Minas Gerais, Revista Brasileira de Geociências 37 (4, suppl.) (2007) 204-215. https://doi.org/10.25249/0375-7536.200737S4204215.
Santos, W. O., Mattiello, E. M., Pacheco, A. A., Vergutz, L., Souza-Filho, L. F. S., Abdala, D. B., Thermal treatment of a potassium-rich metamorphic rock in formation of soluble K forms, International Journal of Mineral Processing 159 (2017) 16-21. https://doi.org/10.1016/j.minpro.2016.12.004.
Eichler, V., Lopes, A. S., Disponibilidade do potássio do Verdete de Abaeté, calcinado com e sem calcário magnesiano, para a cultura do milho (Zea mays L.), em solo de textura argilosa, Ciência e Prática 7 (2) (1983) 136-156.
Leite, P. C., Efeitos de tratamentos térmicos em misturas de verdete de Abaeté, fosfato de Araxá e calcário magnesiano, na disponibilidade de potássio e fósforo. 1985. 146 f. Dissertation (Master’s in Agronomy) - School of Agriculture of Lavras, Lavras, 1985.
Martins, V., Gonçalves, A. S. F., Marchi, G., Guilherme, L. R. G., Martins, E. S., Solubilização de potássio em misturas de verdete e calcário tratadas termoquimicamente, Pesquisa Agropecuária Tropical 45 (1) (2015) 66-72. https://doi.org/10.1590/1983-40632015v4527917.
Pereira, A. C., Carvalho, I. S. B., Rocha, S. D. F., Glauconite-bearing rocks as alternative potassium source for fertilizer by thermal processing with additives, Brazilian Applied Science Review 3 (2) (2019) 1455-1467. https://doi.org/10.34115/basrv3n2-050.
Pereira, A. C., Becheleni, E. M. A., Gomes, M. R. S., Rocha, S. D. F., Fluoride aided potassium extraction from Verdete rock by thermal processing with ferrous sulfate heptahydrate, Brazilian Applied Science Review 3 (2) (2019) 1373-1384. http://www.brjd.com.br/index.php/BASR/article/view/1565.
Liu, S., Li, Q., Xie, G., Li, L., Xiao, H., Effect of grinding time on the particle characteristics of glass powder, Powder Technology 295 (2016) 133-141. https://doi.org/10.1016/j.powtec.2016.03.030.
Lu, P., Jefferson, I. F., Rosenbaum, M. S., Smalley, I. J., Fractal characteristics of loess formation: evidence from laboratory experiments, Engineering Geology 69 (3-4) (2003) 287-293. https://doi.org/10.1016/S0013-7952(02)00287-9.