Influence of Ce(IV) ions amount on the electrochemical behavior of hybrid films in 0.1 mol L-1 NaCl solution

Main Article Content

Fernando Santos da Silva
Hercílio Gomes de Melo
Assis Vicente Benedetti
Patrícia Hatsue Suegama

Abstract

In this work, the influence of ceric ions (Ce(SO4)2) addition to the hydrolysis solution on the corrosion protection afforded by organic-inorganic hybrid coating obtained from tetraethoxysilane (TEOS) and 3-methacryloxy-propyl-trimethoxysilane (MPTS) to a carbon steel substrate in 0.1 mol L-1 NaCl solution was studied. Open circuit potential (EOC) and electrochemical impedance spectroscopy (EIS) experiments were carried out and showed that the protection afforded by the organic-inorganic hybrid coating was extremely dependent on the Ce4+ ions amount. These results were in close agreement with optical microscopy observation of the degrading surfaces, both procedures showing that more protective coating was produced when 500 ppm of Ce4+ ions were added to the organic-inorganic hybrid solution. The chemical state of the organic-inorganic hybrid coating investigated by X-ray photoelectron spectroscopy (XPS) indicated that the addition of Ce4+ ions enhances the polycondensation degree of the organic-inorganic hybrid coating leading to a denser siloxane (Si-O-Si) network. A strategy using laser-induced breakdown spectroscopy (LIBS) and UV-Vis spectrometry was set up in order to verify, respectively, the presence of Ce ions within the coating structure and its oxidation state. LIBS results confirmed the incorporation of Ce ions in the coating, which, according to UV-Vis measurements, are mainly in the (IV)-oxidation state.

Metrics

Metrics Loading ...

Article Details

How to Cite
da Silva, F. S., de Melo, H. G., Benedetti, A. V., & Suegama, P. H. (2019). Influence of Ce(IV) ions amount on the electrochemical behavior of hybrid films in 0.1 mol L-1 NaCl solution. Eclética Química, 44(4), 27–56. https://doi.org/10.26850/1678-4618eqj.v44.4.2019.p27-56
Section
Original articles

References

Hammer, P., dos Santos, F. C., Cerrutti, B. M., Pulcinelli, S. H., Santilli, C. V. Carbon nanotube-reinforced siloxane-PMMA hybrid coatings with high corrosion resistance, Prog. Org. Coat. 76 (2013) 601-608.

https://doi.org/10.1016/j.porgcoat.2012.11.015

Brinker, C. J., Scherer G. W. Sol-Gel Science The Physics and Chemistry processing, first ed., Academic Press, San Diego, 1990.

https://doi.org/10.1016/C2009-0-22386-5

Schubert, U., Husing, N., Lorenz, A. Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides, Chem. Mater. 7 (1995) 2010-2027.

https://doi.org/10.1021/cm00059a007

Lamaka, S. V., Montemor, M. F., Galio, A. F., Zheludkevich, M. L., Trindade, C., Dick, L. F., Ferreira, M. G. S. Novel hybrid sol–gel coatings for corrosion protection of AZ31B magnesium alloy, Electrochim. Acta 53 (2008) 4773-4783.

https://doi.org/10.1016/j.electacta.2008.02.015

Van Ooij, W. J., Zhu, D., Stacy, M., Seth, A., Mugada, T., Gandhi, J., Puomi, P. Corrosion Protection Properties of Organofunctional Silanes-An Overview, Tsinghua Sci. and Technol. 10 (2005) 639-664.

https://doi.org/10.1016/S1007-0214(05)70134-6

Kron, J., Deichmann, K. J, Rose, K. Self-healing properties of new surface treatments, European Federation of Corrosion Publications, London, 2010.

ISBN-13: 978-1906540364

Wang, D., Bierwagen, G. P. Sol–gel coatings on metals for corrosion protection, Prog. Org. Coat. 64 (2009) 327–338.

https://doi.org/10.1016/j.porgcoat.2008.08.010

Ferreira, M. G. S., Duarte, R. G. Montemor, M. F., Simões, A. M. P., Silanes and rare earth salts as chromate replacers for pre-treatments on galvanised steel, Electrochim. Acta 49 (2004) 2927-2935.

https://doi.org/10.1016/j.electacta.2004.01.051

Trabelsi, W., Cecilio, P., Ferreira, M. G. S., Montemor, M. F. Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanized steel substrates, Prog. Org. Coat. 54 (2005) 276-284.

https://doi.org/10.1016/j.porgcoat.2005.07.006

Montemor, M. F., Ferreira, M. G. S. Cerium salt activated nanoparticles as fillers for silane films: Evaluation of the corrosion inhibition performance on galvanised steel substrates, Electrochim. Acta 52 (2007) 6976-6987.

https://doi.org/10.1016/j.electacta.2007.05.022

Ozturk, T., Cakmak, I. Synthesis of block copolymers via redox polymerization, Iranian Polym. J. 16-8 (2007) 561-581.

https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9<1385::AID-APP4>3.0.CO;2-F

Nagarajan, S., Srinivason, K. S. V. Block copolymerization initiated by Ce(IV)- poly(ethylene glycol) redox system-kinetics and characterization, Europe Polym. J. 30 (1994) 113-119.

https://doi.org/10.1016/0014-3057(94)90240-2

Fernanderz, M. D., Fernandez, M. J, Guzman, G. M. Study of the morphology of poly(methyl methacrylate) as polymerized by the redox system Ce(IV)–isopropyl alcohol, J. Polym. Sci. 27 (1989) 3439-3450.

https://doi.org/10.1002/pola.1989.080271022

Cho, U. Y., Romero, J. R. Chemical and electrochemical oxidative dimerization of carbonyl compounds by cerium(IV) salts. A comparative study, Tetr. Lett. 36 - 48 (1995) 8757-8760.

https://doi.org/10.1016/0040-4039(95)01921-4

Cho, L. Y., Madurro, J. M., Romero, J. R. Electrooxidation of β-Dicarbonyl Compounds Using Ceric Methanesulfonate as Mediator: Some Kinetics and Spectroscopic Studies, J. Cat. 186 (1999) 31- 35.

https://doi.org/10.1006/jcat.1999.2541

Purgato, F. L. S., Romero, J. R. Electrooxidation of Hydroxyl Compounds Using Cerium Salts as Mediators: The Importance of Substrate Size for Catalyst Regeneration, J. of Cat. 209 (2002) 394 - 400.

https://doi.org/10.1006/jcat.2002.3646

Aleixo, P. C., Cho, L. Y., Romero, J. R. Oxygen as an Oxidizing Agent in Electrocatalytic Oxidation of β-Dicarbonylic Compounds Using CeIV as a Mediator, J. of Cat. 192 (2000) 248 - 251.

https://doi.org/10.1006/jcat.2000.2829

Lofrano, R. C. Z., Madurro, J. M., Romero, J. R. Preparation and properties of an electrode coated with a cerium poly(allyl ether p-benzenesulfonate) film for electroorganic reactions, J. Mol. Catal. A. Chem. 153 (2000) 237-242.

https://doi.org/10.1016/S1381-1169(99)00354-4

Suegama, P. H., de Melo, H. G., Benedetti, A. V., Aoki, I. V. Influence of cerium (IV) ions on the mechanism of organosilane polymerization and on the improvement of its barrier properties, Electrochim. Acta 54 (2009) 2655-2662.

https://doi.org/10.1016/j.electacta.2008.11.007

Palomino, L. M., Suegama, P. H., Aoki, I. V., Montemor, M. F., de Melo H. G. Electrochemical study of modified cerium–silane bi-layer on Al alloy 2024-T3, Corr. Sci. 51 (2009) 1238–1250.

https://doi.org/10.1016/j.corsci.2009.03.012

Hammer P., Schiavetto M. G., Santos F. C., Benedetti A. V., Pulcinelli S. H., Santilli C. V. Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping, J. Non-Cryst. Solids, 356 (2010) 2606–2612.

https://doi.org/10.1016/j.jnoncrysol.2010.05.013

Suegama P H, Sarmento V H V, Montemor M F, Benedetti A V, de Melo H G, Aoki I V, Santilli C V (2010) Effect of cerium (IV) ions on the anticorrosion properties of siloxanepoly(methyl methacrylate) based film applied on tin coated steel, Electrochim. Acta 55: 5100–5109.

https://doi.org/10.1016/j.electacta.2010.04.002

Orazem, M. E., Tribollet, B., Electrochemical Impedance Spectroscopy, first ed., John Wiley & Sons, New Jersey, 2008.

ISBN: 111820994X

Phuoc, T. X., Wang, P., McIntyre, D. Detection of rare earth elements in Powder River Basin sub-bituminous coal ash using laser-induced breakdown spectroscopy (LIBS), Fuel 163 (2016) 129–132.

https://doi.org/10.1016/j.fuel.2015.09.034

Geenen, F. M., de Wit, J. H. W. An impedance spectroscopy study of the degradation mechanism for a model epoxy coating on mild steel, Prog. Org. Coat. 18 (1990) 299-312.

https://doi.org/10.1016/0033-0655(90)80007-L

Sarmento, V. H. V, Schiavetto, M. G., Hammer, P., Benedetti, A. V., Fugivara, C. S., Suegama, P. H, Pulcinelli S. H., Santilli C. V. Corrosion protection of stainless steel by polysiloxane hybrid coatings prepared using the sol–gel process, Surf. & Coat. Technol. 204 (2010) 2689–2701.

https://doi.org/10.1016/j.surfcoat.2010.02.022

Bonora, P. L., Deflorian, F., Fedrizzi, L. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion, Electrochim. Acta 41 (1996) 1073-1082.

https://doi.org/10.1016/0013-4686(95)00440-8

Pepe, A., Aparicio, M., Duran, A., Cere, S. Cerium hybrid silica coatings on stainless steel AISI 304 substrate, J. Sol-Gel Sci. Techn. 39 (2006) 131–138.

https://doi.org/10.1007/s10971-006-9173-1

Yaggi, C., Yildiz, U. Redox polymerization of methyl methacrylate with allyl alcohol 1,2-butoxylate-block-ethoxylate initiated by Ce (IV)/HNO3 redox system, Europe Poly. J. 41 (2005) 177-184.

https://doi.org/10.1016/j.eurpolymj.2004.08.008

Capelossi, V. R., Aoki, I. V. Influence of sonication on anticorrosion properties of a sulfur silane film dopped with Ce (IV) on galvannealed steel, Prog. Org. Coat. 76 (2013) 812–820.

http://dx.doi.org/10.1016/j.porgcoat.2013.01.012

Molander, G. A. Application of lanthanide reagents in organic synthesis, Chem. Rev., 92 (1992) 29–68.

https://doi.org/10.1021/cr00009a002

Choi, Y-S., Nesic, S., Ling, S. Effect of H2S on the CO2 corrosion of carbon steel in acidic solutions, Electrochim. Acta v. 56 (2011) 1752–1760.

https://doi.org/10.1016/j.electacta.2010.08.049

Keddam, M., Mattos, O. R. Takenouti H, Reaction Model for Iron Dissolution Studied by Electrode Impedance: II. Determination of the Reaction Model, J. Electrochem.Soc. 128 (1981) 266-274.

https://doi.org/10.1149/1.2127402

Keddam, M., Mattos, O. R., Takenouti, H. Reaction Model for Iron Dissolution Studied by Electrode Impedance I . Experimental Results and Reaction Model, J. Electrochem.Soc. 128 (1981) 257-266.

https://doi.org/10.1149/1.2127402

Epelboin, I., Keddam, M., Mattos, O. R., Takenouti, H. The dissolution and passivation of Fe and Fe-Cr alloys in acidified sulphate medium: Influences of pH and Cr content, Corr. Sci. 19 (1979) 1105-1112.

https://doi.org/10.1016/S0010-938X(79)80128-6

Zhu, D., van Ooij, W. J. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane, Prog. Org. Coat. 49 (2004) 42-53.

https://doi.org/10.1016/j.porgcoat.2003.08.009

van Westing, E. P. M., Ferrari, G. M., de Wit, J. H. W. The determination of coating performance with impedance measurements-III. in situ determination of loss of adhesion, Corros. Sci. 36 (1994) 979-994.

https://doi.org/10.1016/0010-938X(94)90198-8

Musiani, M., Orazem, M. E., Pébèrec, N., Tribollet, B., Vivier, V. Constant-Phase-Element Behavior Caused by Coupled Resistivity and Permittivity Distributions in Films, J. Electrochem. Soc. 158 (2011) C424- C428.

https://doi.org/10.1149/2.039112jes

Hirschorn, B., Orazem, M. E., Tribollet, B., Vivier, V., Frateur, I., Musiani, M. J. Constant Phase-Element Behavior Caused by Resistivity Distributions in Films I. Theory, J. Electrochem. Soc. 157 (2010) C452- C457.

https://doi.org/10.1149/1.3499564

Hirschorn, B., Orazem, M. E., Tribollet, B., Vivier, V., Frateur, I., Musiani, M. Constant Phase-Element Behavior Caused by Resistivity Distributions in Films II. Applications, J. Electrochem. Soc. 157 (2010) C458-C563.

https://doi.org/10.1149/1.3499564

Sakai, R. T., di L Cruz, F. M., de Melo, H. G., Benedetti, A. V., Santilli, C. V., Suegama, P. H. Electrochemical study of TEOS, TEOS/MPTS, MPTS/MMA and TEOS/MPTS/MMA films on tin coated steel in 3.5% NaCl solution, Prog. Org. Coat. 74 (2012) 288-381.

https://doi.org/10.1016/j.porgcoat.2012.01.001

Van Westing, E. P. M., Ferrari, G. M., de Witt, J. H. W. The determination of coating performance with impedance measurements-II. Water uptake of coatings Corros. Sci. 36 (1994) 957-977.

https://doi.org/10.1016/0010-938X(94)90197-X

Paussa, L., Rosero-Navarro, N. C., Bravin, D., Andreatta, F., Lanzutti, A., Aparicio, M., Durán, A., Fedrizzi, L. ZrO2 sol-gel pre-treatments doped with cerium nitrate for the corrosion protection of AA6060, Prog. Org. Coat. 74 (2012) 311-319.

https://doi.org/10.1016/j.porgcoat.2011.08.017

Silva, F. S., Suegama, P. H., Silva, W. P., Rinaldi, A. W., Domingues, N. L. C., Matsumoto, M. Y., Salazar, L. G. Effect of Different Dopants in Films TEOS/MPTS Used to Protect the Carbon Steel, Mater. Sci. Forum 805 (2015) 167-171.

https://doi.org/10.4028/www.scientific.net/MSF.805.167

Arnott, D. R., Ryan, N. E., Hinton, B. R. W. Auger and XPS studies of cerium corrosion inhibition on 7075 aluminum alloy, Applic. of Surf. Sci. 22-23 (1985) 236-251.

https://doi.org/10.1016/0378-5963(85)90056-X

Rosero-Navarro, N. C., Pellice, S. A., Duran, A., Aparicio, M. Effects of Ce-containing sol–gel coatings reinforced with SiO2 nanoparticles on the protection of AA2024. Corr. Sci. 50 (2008) 1283–1291.

https://doi.org/10.1016/j.corsci.2008.01.031

Naderi, R., Fedel, M., Deflorian, F., Poelman, M., Olivier, M. Synergistic effect of clay nanoparticles and cerium component on the corrosion behavior of eco-friendly silane sol–gel layer applied on pure aluminum. Surf. & Coat. Technol. 224 (2013) 93–100.

https://doi.org/10.1016/j.surfcoat.2013.03.005

Nocun, M., Cholewa-Kowalska, K., Łaczka, M., Structure of hybrids based on TEOS cyclic forms of siloxane system, J. of Mol. Struct., 938 (2009) 24–28.

https://doi.org/10.1016/j.molstruc.2009.08.034

Materne, T., de Buyl, F., Witucki, G. L., Organisilane technology in coating applications, first ed. Dow Corning, Midland, 2004.

Montemor, M. F., Ferreira, M. G. S. Analytical and microscopic characterisation of modified bis-[triethoxysilylpropyl] tetrasulphide silane films on magnesium AZ31 substrates, Prog. Org. Coat. 60 (2007) 228–237.

https://doi.org/10.1016/j.porgcoat.2007.07.019

Tabata, A., Fujii, S., Suzuoki, Y., Mizutani, T., Ieda, M., X-ray photoelectron spectroscopy (XPS) of hydrogenated amorphous silicon carbide (a-SixC1-x:H) prepared by the plasma CVD method , J. Phys. D: Appl. Phys. 23 (1990) 316-320.

https://doi.org/10.1088/0022-3727/23/3/008

Scott, H. A., Yu, P., O’Keefe, T. J., O’Keefe, M. J., Stoffer, J. O. The Phase Stability of Cerium Species in Aqueous Systems I. E-pH Diagram for the Ce-HClO4-H2OCe-HClO4-H2O System, J. Electrochem. Soc. 149 (2002) C623-C630.

https://doi.org/10.1002/chin.200309018

Yu, P., Scott, H. A., O’Keefe, T. J., O’Keefe, M. J., Stoffer, J. O. The Phase Stability of Cerium Species in Aqueous Systems II. The Formula Systems. Equilibrium Considerations and Pourbaix Diagram Calculations, J. Electrochem. Soc. 153 (2006) C74-C79.

https://doi.org/10.1149/1.1516775

Nicolò, A., Paussa, L., Gobessi, A., Lanzutti, A., Cepek, C., Andreatta, F., Fedrizzi, L. Cerium conversion coating and sol-gel multilayer system for corrosion protection of AA6060, Surf. & Coat. Technol. 287 (2016) 33-43.

https://doi.org/10.1016/j.surfcoat.2015.12.059