Occurrence of caffeine in wastewater and sewage and applied techniques for analysis: a review
Main Article Content
Abstract
Emerging contaminants are substances found in the environment whose concentrations vary from µg to ng L-1 and whose presence in wastewater has gained popularity in the scientific community due to the potential impacts these compounds can cause to the environment. This designation concerns the lack of legislation to regulate their discharge or even to monitor these compounds. Moreover, emerging contaminants are capable of causing harmful effects to nontarget organisms and therefore affect the ecosystem balance. There are several compounds classified as emerging contaminants such as pharmaceuticals, illicit drugs, hormones, pesticides, among others. And among them, caffeine is considered an emerging contaminant and can be highlighted due its presence in medicines, beverages, foodstuff and several other products. In addition, it is a compound used worldwide recognized as a marker of anthropogenic activity. In this review, we present a discussion about emerging contaminants, focusing on caffeine, regulatory aspects that involve the theme, as well as effects on organisms, removal technologies and techniques for analyzing these compounds in environmental matrices.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Quesada, H. B., Baptista, A. T. A., Cusioli, L. F., Seibert, D., Bezerra, C. O., Bergamasco, R., Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere 222 (2019) 766-780. https://doi.org/10.1016/j.chemosphere.2019.02.009.
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Van Der Ploeg, M., Van De Zee, S. E. A. T. M., Ritsema, C. J., Emerging pollutants in the environment: A challenge for water resource management, International Soil and Water Conservation Research 3 (1) (2015) 57-65. https://doi.org/10.1016/j.iswcr.2015.03.002.
Aubakirova, B., Beisenova, R., Boxall, A., Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan, Integrated Environmental Assessment and Management 13 (5) (2017) 832-839. https://doi.org/10.1002/ieam.1895.
Bai, X., Lutz, A., Carroll, R., Keteles, K., Kenneth, D., Murphy, M., Nguyen, D., Occurrence, distribution, and seasonality of emerging contaminants in urban watersheds. Chemosphere 200 (2018) 133-142. https://doi.org/10.1016/j.chemosphere.2018.02.106.
Biel-Maeso, M., Corada-Fernández, C., Lara-Martín, P. A., Monitoring the occurrence of pharmaceuticals in soils irrigated with reclaimed wastewater, Environmental Pollution 235 (2018) 312-321. https://doi.org/10.1016/j.envpol.2017.12.085.
Chen, W., Cheng, J., Lin, X. Systematic screening and identification of the chlorinated transformation products of aromatic pharmaceuticals and personal care products using high-resolution mass spectrometry, Science of the Total Environment 637-638 (2018) 253-263. https://doi.org/10.1016/j.scitotenv.2018.05.011.
James, J. E., Critical review of dietary caffeine and blood pressure: a relationship that should be taken more seriously, Psychosomatic Medicine 66 (1) (2004) 63-71. https://doi.org/10.1097/10.PSY.0000107884.78247.F9.
Gros, M., Rodríguez-Mozaz, S., Barceló, D., Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry, Journal of Chromatography A 1292 (2013) 173-188. https://doi.org/10.1016/j.chroma.2012.12.072.
United States Environmental Protection Agency. About risk assessment: learn about risk assessment. https://www.epa.gov/risk/about-risk-assessment#whatisrisk.
World Health Organization (WHO); United Nations Children’s Fund (UNICEF), Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines. https://www.unicef.org/publications/index_96611.html.
Agência Nacional das Águas (ANA). Atlas Esgotos: Despoluição das bacias hidrográficas. http://atlasesgotos.ana.gov.br.
BRAZIL., 23rd Diagnosis of Water and Sewage Services – 2017, Ministry of Regional Development, National Sanitation Information System. http://www.snis.gov.br/component/content/article?id=175.
Sauvé, S., Desrosiers, M., A review of what is an emerging contaminant, Chemistry Central Journal 8 (15) (2014) 1-7. https://doi.org/10.1186/1752-153X-8-15.
Bolong, N., Ismail, A.F., Salim, M.R., Matsuura, T., A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination 239 (2009) 229-246. https://doi.org/10.1016/j.desal.2008.03.020.
United Nations World Water Assessment Programme (WWAP). 2017. The United Nations World Water Development Report 2017. Wastewater: The Untapped Resource. Paris, UNESCO.
Montagner, C. C., Vidal, C., Acayaba, R. D., Contaminantes emergentes em matrizes aquáticas do brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios, Química Nova 40 (9) (2017) 1094-1110. https://doi.org/10.21577/0100-4042.20170091.
Guasch, H., Serra, A., Corcoll, N., Bonet, B., Leira, M., Metal ecotoxicology in fluvial biofilms: potential influence of water scarcity. In: Sabater, S., Barceló, D., (Eds) Water Scarcity in the Mediterranean. The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2010. https://doi.org/10.1007/978-3-642-03971-3.
EPA. Contaminant Candidate List (CCL) and Regulatory Determination. https://www.epa.gov/ccl/contaminant-candidate-list-4-ccl-4-0.
Islas-Flores, H., Gómez-Oliván, L. M., Legislation Controlling the Discharge of Pharmaceuticals into the Environment. In: The Handbook of Environmental Chemistry, Ecopharmacovigilance, Springer 66 (2017) 95-117. https://doi.org/10.1007/698_2017_170.
Von Der Ohe, P. C., Dulio, V., Slobodnik, J., Deckere, E., Kühne, R., Ebert, R-U., Ginebreda, A., Cooman, W., Schüürman, G., Brack, W., A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive, Science of the Total Environment 409 (11) (2011) 2064-2077. https://doi.org/10.1016/j.scitotenv.2011.01.054.
Dulio, V., Van Bavel, B., Brorström-Lundén, E., Harmsen, J., Hollender, J., Schlabach, M., Slobodnik, J., Thomas, K., Koschorreck, J., Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations, Environmental Sciences Europe 30 (5) (2018) 1-13. https://doi.org/10.1186/s12302-018-0135-3.
Wu, J., Yue, J., Hu, R., Yang, Z., Zhang, L., Use of caffeine and human pharmaceutical compounds to identify sewage contamination, International Journal of Biomedical and Biological Engineering 2 (8) (2008) 289-293. https://publications.waset.org/8464/pdf.
Montagner, C. C., Umbuzeiro, G. A., Pasquini, C., Jardim, W. F., Caffeine as an indicator of estrogenic activity in source water. Environmental Science: Processes Impacts 16 (8) (2014) 10-13. https://doi.org/10.1039/C4EM00058G.
Gonçalves, E. S., Rodrigues, S. V., Silva-Filho, E. V., The use of caffeine as a chemical marker of domestic wastewater contamination in surface waters: seasonal and spatial variations in Teresópolis, Brazil, Revista Ambiente & Água 12 (2) (2016) 192-202. https://doi.org/10.4136/ambi-agua.1974.
Edwards, Q. A., Kulikov, S. M., Garner-O’neale, L. D., Caffeine in surface and wastewaters in Barbados, West Indies, Springer Plus 4 (57) (2015) 1-12. https://doi.org/10.1186/s40064-015-0809-x.
Gracia-Lor, E., Castiglioni, S., Bade, R., Been, F., Castrignanò, E., Covaci, A., González-Mariño, I., Hapeshi, E., Kasprzyk-Hordern, B., Kinyua, J., Lai, F. Y., Letzel, T., Lopardo, L., Meyer, M. R., O’Brien, J., Ramin, P., Rousis, N. I., Rydevik, A., Ryu, Y., Santos, M. M., Senta, I., Thomaidis, N. S., Veloutsou, S., Yang, Z., Zuccato, E., Bijlsma, L., Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives, Environment International 99 (2017) 131-150. https://doi.org/10.1016/j.envint.2016.12.016.
Ferreira, A. P., Caffeine as an environmental indicator for assessing urban aquatic ecosystems, Cadernos de Saúde Pública 21 (6) (2005) 1884-1892. https://doi.org/10.1590/S0102-311X2005000600038.
Senta, I., Gracia-Lor, E., Borsotti, A., Zuccato, E., Castiglioni, S., Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment, Water Research 74 (2015) 23-33. https://doi.org/10.1016/j.watres.2015.02.002.
González-Alonso, S., Merino, L. M., Esteban, S., Alda, M. L., Barceló, D., Durán, J. J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., Valcárcel, Y., Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region, Environmental Pollution 229 (2017) 241-254. https://doi.org/10.1016/j.envpol.2017.05.060.
Williams, M., Kookana, R. S., Mehta, A., Yadav, S. K., Tailor, B. L., Maheshwari, B., Emerging contaminants in a river receiving untreated wastewater from an Indian urban centre, Science of the Total Environment 647 (2019) 1256-1265. https://doi.org/10.1016/j.scitotenv.2018.08.084.
Sposito, J. C. V., Montagner, C. C., Casado, M., Navarro-Martín, L., Solórzano, J. C. J., Piña, B., Grisolia, A. B., Emerging contaminants in Brazilian rivers: Occurrence and effects on gene expression in zebrafish (Danio rerio) embryos, Chemosphere 209 (2018) 696-704. https://doi.org/10.1016/j.chemosphere.2018.06.046.
Campanha, M. B., Awan, A. T., Sousa, D. N. R., Grosseli, G. M., Mozeto, A. A., Fadini, P. S., A 3-year study on occurrence of emerging contaminants in an urban stream of São Paulo State of Southeast Brazil, Environmental Science and Pollution Research 22 (10) (2015) 7936-7947. https://doi.org/10.1007/s11356-014-3929-x.
Montagner, C. C., Jardim, W. F. Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, São Paulo State (Brazil), Journal of the Brazilian Chemical Society 22 (8) (2011) 1452-1462. https://doi.org/10.1590/S0103-50532011000800008
Cunha, V., Burkhardt-Medicke, K., Wellner, P., Santos, M. M., Moradas-Ferreira, P., Luckenbach, T., Ferreira, M., Effects of pharmaceuticals and personal care products (PPCPs) on multixenobiotic resistance (MXR) related efflux transporter activity in zebrafish (Danio rerio) embryos, Ecotoxicology and Environmental Safety 136 (2017) 14-23. https://doi.org/10.1016/j.ecoenv.2016.10.022.
Fraz, S., Lee, A. H., Wilson, J. Y., Gemfibrozil and carbamazepine decrease steroid production in zebra fish testes (Danio rerio), Aquatic Toxicology 198 (2018) 1-9. https://doi.org/10.1016/j.aquatox.2018.02.006.
Sehonova, P., Svobodova, Z., Dolezelova, P., Vosmerova, P., Faggio, C., Effects of waterborne antidepressants on non-target animals living in the aquatic environment: A review, Science of the Total Environment 631-632 (2018) 789-794. https://doi.org/10.1016/j.scitotenv.2018.03.076.
Aguirre-Martínez, G. V., Delvalls, A. T., Laura Martín-Díaz, M. Yes, caffeine, ibuprofen, carbamazepine, novobiocin and tamoxifen have an effect on Corbicula fluminea (Müller, 1774). Ecotoxicology and Environmental Safety 120 (2015) 142-154. https://doi.org/10.1016/j.ecoenv.2015.05.036.
Cruz, D., Almeida, Â., Calisto, V., Esteves, V. I., Schneider, R. J., Wrona, F. J., Soares, A. M. V. M., Figueira, E., Freitas, R., Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers, Chemosphere 160 (2016) 95-103. https://doi.org/10.1016/j.chemosphere.2016.06.068.
Pires, A., Almeida, Â., Calisto, V., Schneider, R. J., Esteves, V. I., Wrona, F. J., Soares, A. M. V. M., Figueira, E., Freitas, R., Long-term exposure of polychaetes to caffeine: Biochemical alterations induced in Diopatra neapolitana and Arenicola marina, Environmental Pollution 214 (2016) 456-463. https://doi.org/10.1016/j.envpol.2016.04.031.
Brandt, E. M. F., Queiroz, F. B., Afonso, R. J. C. F., Aquino, S. F., Chernicharo, C. A. L., Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems, Journal of Environmental Management 128 (2013) 718-726. https://doi.org/10.1016/j.jenvman.2013.06.003.
Buttiglieri, G., Knepper, T. P. Removal of emerging contaminants in wastewater treatment: conventional activated sludge treatment. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-79210-9_1.
Radjenovic, J., Matosic, M., Mijatovic, I., Petrovic, M., Barceló, D., Membrane bioreactor (MBR) as an advanced wastewater treatment technology. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/698_5_093.
Kunst, B., Kosutic, K., Removal of emerging contaminants in water treatment by nanofiltration and reverse osmosis. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-79210-9_3.
Chernicharo, C. A. L. Anaerobic reactors, London: IWA, 2007.
Zaiat, M., Passig, F. H., Foresti, E., Treatment of domestic sewage in horizontal-flow anaerobic immobilized biomass (HAIB) reactor, Environmental Technology 21 (10) (2000) 1139-1145. https://doi.org/10.1080/09593330.2000.9619000.
Ribeiro, R., Nardi, I. R., Fernandes, B. S., Foresti, E., Zaiat, M., BTEX removal in a horizontal-flow anaerobic immobilized biomass reactor under denitrifying conditions, Biodegradation 24 (2) (2013) 269-278. https://doi.org/10.1007/s10532-012-9585-2.
Gusmão, V. R., Martins, T. H., Chinalia, F. A., Sakamoto, I. K., Thiemann, O. H., Varesche, M. B. A., BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition, Process Biochemistry 41 (6) (2006) 1391-1400. https://doi.org/10.1016/j.procbio.2006.02.001.
Damianovic, M. H. R. Z., Moraes, E. M., Zaiat, M., Foresti, E., Pentachlorophenol (PCP) dechlorination in horizontal-flow anaerobic immobilized biomass (HAIB) reactors, Bioresource Technology 100 (9) (2009) 4361-4367. https://doi.org/10.1016/j.biortech.2009.01.076.
Oliveira, L. L., Silveira Duarte, I. C., Sakamoto, I. K., Varesche, M. B. A., Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors, Journal of Environmental Management 90 (2) (2009) 1261-1268. https://doi.org/10.1016/j.jenvman.2008.07.013.
Chatila, S., Amparo, M. R., Carvalho, L. S., Penteado, E. D., Tomita, I. N., Santos-Neto, Á. J., Gomes, P. C. F. L., Zaiat, M., Sulfamethoxazole and ciprofloxacin removal using a horizontal-flow anaerobic immobilized biomass reactor, Environmental Technology 37 (7) (2016) 847-853. https://doi.org/10.1080/09593330.2015.1088072.
Oliveira, G. H. D., Santos-Neto, Á. J., Zaiat, M., Removal of the veterinary antimicrobial sulfamethazine in a horizontal-flow anaerobic immobilized biomass (HAIB) reactor subjected to step changes in the applied organic loading rate, Journal of Environmental Management 204 (1) (2017) 674-683. https://doi.org/10.1016/j.jenvman.2017.09.048.
Oliveira, C. A., Penteado, E. D., Tomita, I. N., Santos-Neto, Á. J., Zaiat, M., Silva, B. F., Gomes, P. C. F. L. Removal kinetics of sulfamethazine and its transformation products formed during treatment using a horizontal flow-anaerobic immobilized biomass bioreactor, Journal of Hazardous Materials 365 (2019) 34-43. https://doi.org/10.1016/j.jhazmat.2018.10.077.
Martins, G. S., Luchiari, N. C., Lamarca, R. S., Silva, B. F., Gomes, P. C. F. L., Removal of sulfamethoxazole and trimethoprim using horizontal-flow anaerobic immobilized bioreactor, Scientia Chromatographica 9 (4) (2017) 253-264. http://www.iicweb.org/scientiachromatographica.com/files/v9n4a04.pdf.
Rodríguez, A., Rosal, R., Perdigón-Melón, J. A., Mezcua, M., Aguera, A., Hernando, M. D., Letón, P., Fernández-Alba, A. R., García-Calvo, E., Ozone-based technologies in water and wastewater treatment. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/698_5_103.
Malato, S., Removal of emerging contaminants in waste-water treatment: removal by photo-catalytic processes. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/978-3-540-79210-9_5.
Jovancic, P., Radetic, M., Advanced sorbent materials for treatment of wastewaters. In: Barceló, D., Petrovic, M., (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin Heidelberg, 2008. https://doi.org/10.1007/698_5_097.
Barceló, D., Petrovic, M., Conclusions and future research needs. In: Barceló, D., Petrovic, M. (Eds) Emerging contaminants from industrial and municipal waste: removal technologies, The Handbook of Environmental Chemistry, Springer Berlin, Heidelberg, 2008. https://doi.org/10.1007/698_5_109.
EPA. Method 1694: Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS. December, 2007. https://www.epa.gov/sites/production/files/2015-10/documents/method_1694_2007.pdf.
EPA. Method 1698: Steroids and Hormones in Water, Soil, Sediment, and Biosolids by HRGC/HRMS. December, 2007. https://www.epa.gov/sites/production/files/2015-10/documents/method_1698_2007.pdf.
Leite, G. S., Afonso, R. J. C. F., Aquino, S. F., Caracterização de contaminantes presentes em sistemas de tratamento de esgotos, por cromatografia líquida acoplada à espectrometria de massas tandem em alta resolução, Química Nova 33 (3) (2010) 734-738. https://doi.org/10.1590/S0100-40422010000300044.
Silva, C. G. A., Collins, C. H., Aplicação de cromatografia líquida de alta eficiência para o estudo de poluentes orgânicos emergentes, Química Nova 34 (4) (2011) 665-676. https://doi.org/10.1590/S0100-40422011000400020.
Silva, B. F., Jelic, A., López-Serna, R., Mozeto, A. A., Petrovic, M., Barceló, D., Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro river basin, Spain, Chemosphere 85 (8) (2011) 1331-1339. https://doi.org/10.1016/j.chemosphere.2011.07.051.
Stewart, M., Olsen, G., Hickey, C. W., Ferreira, B., Jelić, A., Petrović, M., Barceló, D., A survey of emerging contaminants in the estuarine receiving environment around Auckland, New Zealand, Science of the Total Environment 468-469 (2014) 202-210. https://doi.org/10.1016/j.scitotenv.2013.08.039.
Jardim, I. C. S. F. Extração em fase sólida: fundamentos teóricos e novas estratégias para preparação de fases sólidas, Scientia Chromatographica 2 (1) (2010) 13-25. http://www.iicweb.org/scientiachromatographica.com/files/v2n1a2.pdf.
Dimpe, K. M., Nomngongo, P. N., Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices, Trends in Analytical Chemistry 82 (2016) 199-207. https://doi.org/10.1016/j.trac.2016.05.023.
Gilart, N., Borrull, F., Fontanals, N., Marcé, R. M., Selective materials for solid-phase extraction in environmental analysis, Trends in Environmental Analytical Chemistry 1 (2014) e8-e18. https://doi.org/10.1016/j.teac.2013.11.002.
Evans, S. E., Davies, P., Lubben, A., Kasprzyk-Hordern, B., Determination of chiral pharmaceuticals and illicit drugs in wastewater and sludge using microwave assisted extraction, solid-phase extraction and chiral liquid chromatography coupled with tandem mass spectrometry, Analytica Chimica Acta 882 (2015) 112-126. https://doi.org/10.1016/j.aca.2015.03.039.
Vazquez-Roig, P., Andreu, V., Blasco, C., Picó, Y., SPE and LC-MS/MS determination of 14 illicit drugs in surface waters from the Natural Park of L’Albufera (València, Spain), Analytical and Bioanalytical Chemistry 397 (7) (2010) 2851-2864. https://doi.org/10.1007/s00216-010-3720-x.
Buszewski, B., Szultka, M., Past, present, and future of solid phase extraction: a review, Critical Reviews in Analytical Chemistry 42 (3) (2012) 198-213. https://doi.org/10.1080/07373937.2011.645413.
Van Nuijs, A. L. N., Tarcomnicu, I., Simons, W., Bervoets, L., Blust, R., Jorens, P. G., Neels, H., Covaci, A., Optimization and validation of a hydrophilic interaction liquid chromatography–tandem mass spectrometry method for the determination of 13 top-prescribed pharmaceuticals in influent wastewater, Analytical and Bioanalytical Chemistry 398 (5) (2010) 2211-2222. https://doi.org/10.1007/s00216-010-4101-1.
Gros, M., Petrovic, M., Barceló, D. Development of a multi-residue analytical methodology based on liquid chromatography–tandem mass spectrometry (LC–MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters, Talanta 70 (4) (2006) 678-690. https://doi.org/10.1016/j.talanta.2006.05.024.
Babic, S., Pavlovic, D. M., Asperger, D., Perisa, M., Zrncic, M., Horvat, A. J. M., Kastelan-Macan, M., Determination of multi-class pharmaceuticals in wastewater by liquid chromatography–tandem mass spectrometry (LC–MS–MS), Analytical and Bioanalytical Chemistry 398 (3) (2010) 1185-1194. https://doi.org/10.1007/s00216-010-4004-1.
Pedrouzo, M., Borrull, F., Marcé, R. M., Pocurull, E., Ultra-high-performance liquid chromatography–tandem mass spectrometry for determining the presence of eleven personal care products in surface and wastewaters, Journal of Chromatography A 1216 (42) (2009) 6994-7000. https://doi.org/10.1016/j.chroma.2009.08.039.
Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., Cerda, V., Solid-phase extraction of organic compounds: a critical review (part I), Trends in Analytical Chemistry 80 (2016) 641-654. https://doi.org/10.1016/j.trac.2015.08.015.
Gomes, P. C. F. L., Tomita, I. N., Santos-Neto, Á. J., Zaiat, M., Rapid determination of 12 antibiotics and caffeine in sewage and bioreactor effluent by online column-switching liquid chromatography/tandem mass spectrometry, Analytical and Bioanalytical Chemistry 407 (29) (2015) 8787-8801. https://doi.org/10.1007/s00216-015-9038-y.
Rodriguez-Mozaz, S., Alda, M. J. L., Barceló, D., Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography–mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water, Journal of Chromatography A 1152 (1-2) (2007) 97-115. https://doi.org/10.1016/j.chroma.2007.01.046.