Recent advances in the use of Langmuir monolayers as cell membrane models
Main Article Content
Abstract
Understanding the role of biomolecules in cells at the molecular level has been the trade of Prof. Marcio Francisco Colombo and Prof. João Ruggiero Neto in their carriers, which is why it was found appropriate to address the use of Langmuir monolayers as cell membrane models in this special issue. In the review paper, we elaborate upon the reasons why Langmuir monolayers are good models with the possible control of membrane composition and molecular packing. After describing several experimental methods to characterize the Langmuir monolayers, we discuss selected results from the last five years where monolayers were made to interact with pharmaceutical drugs, emerging pollutants and other biologically-relevant molecules. The challenges to take the field forward are also commented upon.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Giner-Casares, J. J., Brezesinski, G., Möhwald, H., Langmuir monolayers as unique physical models, Current Opinion in Colloid & Interface Science 19 (3) (2014) 176-182. https://doi.org/10.1016/j.cocis.2013.07.006.
Stefaniu, C., Brezesinski, G., Möhwald, H., Langmuir monolayers as models to study processes at membrane surfaces, Advances in Colloid and Interface Science 208 (2014) 197-213. https://doi.org/10.1016/j.cis.2014.02.013.
Dynarowicz-Łatka, P., Dhanabalan, A., Oliveira Junior, O. N., Modern physicochemical research on Langmuir monolayers, Advances in Colloid and Interface Science 91 (2) (2001) 221-293. https://doi.org/10.1016/S0001-8686(99)00034-2.
Yeagle, P., The membrane of cells, Academic Press, San Diego, 1993.
Petty, H. R., Molecular biology of membranes: structure and function, Springer, Boston, 1993. https://doi.org/10.1007/978-1-4899-1146-9.
RAYLEIGH, Surface tension, Nature 43 (1891) 437-439. https://doi.org/10.1038/043437c0.
Langmuir, I., The constitution and fundamental properties of solids and liquids. II. Liquids., Journal of the American Chemical Society 39 (9) (1917) 1848-1906. https://doi.org/10.1021/ja02254a006.
Nandi, N., Vollhardt, D., Chiral discrimination and recognition in Langmuir monolayers, Current Opinion in Colloid & Interface Science, 13 (1-2) (2008) 40-46. https://doi.org/10.1016/j.cocis.2007.07.016.
Blodgett, K. B., Langmuir, I., Built-Up Films of Barium Stearate and Their Optical Properties, Physical Review 51 (1937) 964-982. https://doi.org/10.1103/PhysRev.51.964.
Möbius, D., Kuhn, H., Monolayer assemblies of dyes to study the role of thermal collisions in energy-transfer, Israel Journal of Chemistry 18 (3-4) (1979) 375-384. https://doi.org/10.1002/ijch.197900058.
Phan, M. D., Shin, K., A Langmuir Monolayer: Ideal Model Membrane to Study Cell, Journal of Chemical and Biological Interfaces 2 (1) (2014) 1-5. https://doi.org/10.1166/jcbi.2014.1028.
Brockman, H., Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Current Opinion in Structural Biology 9 (4) (1999) 438-443. https://doi.org/10.1016/S0959-440X(99)80061-X.
Nobre, T. M., Pavinatto, F. J., Caseli, L., Barros-Timmons, A., Dynarowicz-Łatka, P., Oliveira Junior, O. N., Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models, Thin Solid Films 593 (2015) 158-188. https://doi.org/10.1016/j.tsf.2015.09.047.
Ferreira, M., Caetano, W., Itri, R., Tabak, M., Oliveira Junior, O. N., Técnicas de caracterização para investigar interações no nível moleculas em filmes de Langmuir e Langmuir-Blodgett (LB), Química Nova 28 (3) (2005) 502-510. https://doi.org/10.1590/S0100-40422005000300024.
Petty, M. C., Langmuir-blodgett films: an introduction, Cambrigde University Express, Cambridge, 1996. https://doi.org/10.1017/CBO9780511622519.
Stenhagen, E., Determination of organic structures by physical methods, Academic Press, New York, 1955.
Wydro, P., Krajewska, B., Ha̧c-Wydro, K., Chitosan as a Lipid Binder: A Langmuir Monolayer Study of Chitosan-Lipid Interactions, Biomacromolecules 8 (2007) 2611-2617. https://doi.org/10.1021/bm700453x.
Demchak, R. J., Fort Junior, T., Surface dipole moments of close-packed monolayers at the air-water interface, Journal of Colloid and Interface Science 46 (1974) 191-202. https://doi.org/10.1016/0021-9797(74)90002-2.
Loschek, R., Mobius, D., Metalation of porphyrins in lipid monolayers at the air-water interface, Chemical Physics Letters 151 (1-2) (1988) 176-182. https://doi.org/10.1016/0009-2614(88)80091-5.
Rice, P. A., McConnell, H. M., Critical shape transitions of monolayer lipid domains, Proceedings of the National Academy of Sciences of the United States of America 86 (17) (1989) 6445-6448. https://doi.org/10.1073/pnas.86.17.6445.
Hénon, S., Meunier, J., Microscope at the Brewster angle: direct observation of first-order phase transitions in monolayers, Review of Scientific Instruments 62 (4) (1991) 936-939. https://doi.org/10.1063/1.1142032.
Hönig, D., Möbius, D., Brewster angle microscopy of LB films on solid substrates, Chemical Physics Letters 195 (1992) 50-52. https://doi.org/10.1016/0009-2614(92)85909-T.
Hönig, D., Möbius, D., Direct visualisation of monolayers at the air–water interface by Brewster angle microscopy, The Journal of Physical Chemistry 95 (12) (1991) 4590-4592. https://doi.org/10.1021/j100165a003.
Vollhardt, D., Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface, Current Opinion in Colloid & Interface Science 19 (3) (2014) 183-197. https://doi.org/10.1016/j.cocis.2014.02.001.
Möbius, D., Light microscopy of organized monolayers, Current Opinion in Colloid & Interface Science 1 (2) (1996) 250-256. https://doi.org/10.1016/S1359-0294(96)80012-4.
Kaercher, T., Hönig, D., Möbius, D., Brewster angle microscopy: a new method of visualizing the spreading of Meibomian lipids, International Ophthalmology 17 (6) (1993) 341-348. https://doi.org/10.1007/BF00915741.
Möbius, D., Morphology and structural characterization of organized monolayers by Brewster angle microscopy, Current Opinion in Colloid & Interface Science 3 (2) (1998) 137-142. https://doi.org/10.1016/S1359-0294(98)80005-8.
Dluhy, R. A., Stephens, S. M., Widayati, S., Williams, A. D., Vibrational spectroscopy of biophysical monolayers. Applications of IR and Raman spectroscopy to biomembrane model systems at interfaces, Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 51 (8) (1995) 1413-1447. https://doi.org/10.1016/0584-8539(94)00241-X.
Mann, J. A., Dynamics, structure, and function of interfacial regions, Langmuir 1 (1) (1985) 10-23. https://doi.org/10.1021/la00061a002.
Blaudez, D., Turlet, J.-M., Dufourcq, J., Bard, D., Buffeteau, T., Desbat, B., Investigations at the air/water interface using polarization modulation IR spectroscopy, Journal of the Chemical Society-Faraday Transactions 92 (4) (1996) 525-530. https://doi.org/10.1039/FT9969200525.
Blaudez, D., Castano, S., Desbat, B., PM-IRRAS at liquid interfaces. In: Biointerface Characterization by Advanced IR Spectroscopy, Pradier, C. M., Chabal, Y. J., ed., Elsevier: Oxford, 2011, Ch. 2. https://doi.org/10.1016/B978-0-444-53558-0.00002-3.
Urakawa, A., Bürgi, T., Baiker, A., Modulation excitation PM-IRRAS: A new possibility for simultaneous monitoring of surface and gas species and surface properties, CHIMIA International Journal for Chemistry 60 (4) (2006) 231-233. https://doi.org/10.2533/000942906777674949.
Hunt, J. H., Guyot-sionnest, P., Shen, Y. R., Observation of C-H stretch vibrations of monolayers of molecules optical Sum-frequency generation, Chemical Physics Letters 133 (3) (1987) 189-192. https://doi.org/10.1016/0009-2614(87)87049-5.
Rasing, T., Shen, Y. R., Kim, M. W., Valint Junior, P., Bock, J., Orientation of surfactant molecules at a liquid-air interface measured by optical second-harmonic generation, Physical Review A 31 (1) (1985) 537-539. https://doi.org/10.1103/PhysRevA.31.537.
Shen, Y. R., The principles of nonlinear optics, Wiley and Sons, Hoboken, 2003.
Boyd, R. R., Nonlinear optics, Academic Press, San Diego, 2003.
Sung, W., Kim, D., Shen, Y. R. Sum-frequency vibrational spectroscopic studies of Langmuir monolayers, Current Applied Physics 13 (4) (2013) 619-632. https://doi.org/10.1016/j.cap.2012.12.002.
Miranda, P. B., Du, Q., Shen, Y. R., Interaction of water with a fatty acid Langmuir film, Chemical Physics Letters 286 (1-2) (1998) 1-8. https://doi.org/10.1016/S0009-2614(97)01476-0.
Sung, W., Seok, S., Kim, D., Tian, C. S., Shen, Y. R., Sum-Frequency Spectroscopic Study of Langmuir Monolayers of Lipids Having Oppositely Charged Headgroups, Langmuir 26 (23) (2010) 18266-18272. https://doi.org/10.1021/la103129z.
Miranda, P. B., Shen, Y. R., Liquid Interfaces: A Study by Sum-Frequency Vibrational Spectroscopy, Journal of Physical Chemistry B 103 (17) (1999) 3292-3307. https://doi.org/10.1021/jp9843757.
Shultz, M. J., Baldelli, S., Schnitzer, C., Simonelli, D., Aqueous Solution/Air Interfaces Probed with Sum Frequency Generation spectroscopy, Journal of Physical Chemistry B 106 (21) (2002) 5313-5324. https://doi.org/10.1021/jp014466v.
Lambert, A. G., Davies, P. B., Neivandt, D. J., Implementing the theory of sum frequency generation vibrational spectroscopy: A tutorial review, Applied Spectroscopy Reviews 40 (2) (2005) 103-145. https://doi.org/10.1081/ASR-200038326.
Adamson, A. W., Gast, A. P., Physical Chemistry of Surfaces, John Wiley and Sons, New York, 1999.
Stefaniu, C., Brezesinski, G., Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface, Advances in Colloid and Interface Science 207 (2014) 265-279. https://doi.org/10.1016/j.cis.2014.01.005.
Stefaniu, C., Brezesinski, G., X-ray investigation of monolayers formed at the soft air/water interface, Current Opinion in Colloid & Interface Science 19 (3) (2014) 216-227. https://doi.org/10.1016/j.cocis.2014.01.004.
Shapovalov, V. L., Ryskin, M. E., Konovalov, O. V., Hermelink, A., Brezesinski, G., Elemental analysis within the electrical double layer using total reflection X-ray fluorescence technique, Journal of Physical Chemistry B 111 (15) (2007) 3927-3934. https://doi.org/10.1021/jp066894c.
Fischer, H. C., Chan, W. C. W., Nanotoxicity: the growing need for in vivo study, Current Opinion in Biotechnology 18 (6) (2007) 565-571. https://doi.org/10.1016/j.copbio.2007.11.008.
Rodrigues, J. C., Caseli, L., Incorporation of bacitracin in Langmuir films of phospholipids at the air-water interface, Thin Solid Films 622 (2017) 95-103. https://doi.org/10.1016/j.tsf.2016.12.019.
Węder, K., Mach, M., Hac-Wydro, K., Wydro, P., Studies on the interactions of anticancer drug - Minerval - with membrane lipids in binary and ternary Langmuir monolayers, Biochimica et Biophysica Acta (BBA) - Biomembranes 1860 (11) (2018) 2329-2336. https://doi.org/10.1016/j.bbamem.2018.05.019.
Torgersen, M. L., Klokk, T. I., Kavaliauskiene, S., Klose, C., Simons, K., Skotland, T., Sandvig, K., The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport, Oncotarget 7 (2016) 86871-86888. https://doi.org/10.18632/oncotarget.13508.
Barbosa, S. C., Nobre, T. M., Volpati, D., Cilli, E. M., Correa, D. S., Oliveira Junior, O. N., The cyclic peptide labaditin does not alter the outer membrane integrity of Salmonella enterica serovar Typhimurium, Scientific Reports 9 (2019) 1993. https://doi.org/10.1038/s41598-019-38551-5.
Alvares, D. S., Viegas, T. G., Ruggiero Neto, J., Lipid-packing perturbation of model membranes by pH-responsive antimicrobial peptides, Biophysical Reviews 9 (5) (2017) 669-682. https://doi.org/10.1007/s12551-017-0296-0.
Girard-Egrot, A. P., Godoy, S., Blum, L. J., Enzyme association with lipidic Langmuir-Blodgett films: Interests and applications in nanobioscience, Advances in Colloid and Interface Science 116 (1-3) (2005) 205-225. https://doi.org/10.1016/j.cis.2005.04.006.
Scholl, F. A., Caseli, L., Langmuir and Langmuir-Blodgett films of lipids and penicillinase: Studies on adsorption and enzymatic activity, Colloids and Surfaces B: Biointerfaces 126 (2015) 232-236. https://doi.org/10.1016/j.colsurfb.2014.12.033.
Araújo, F. T. de, Caseli, L., Rhodanese incorporated in Langmuir and Langmuir-Blodgett films of dimyristoylphosphatidic acid: Physical chemical properties and improvement of the enzyme activity, Colloids and Surfaces B: Biointerfaces 141 (2016) 59-64. https://doi.org/10.1016/j.colsurfb.2016.01.037.
Rocha Junior, C., Caseli, L., Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films, Materials Science & Engineering: C 73 (2017) 579-584. https://doi.org/10.1016/j.msec.2016.12.041.
Broome, J. D., L-asparaginase: discovery and development as a tumor-inhibitory agent, Cancer Treatment Reports 65 (Suppl. 4) (1981) 111-114.
Makyla, K., Paluch, M., The linoleic acid influence on molecular interactions in the model of biological membrane, Colloids and Surfaces B: Biointerfaces 71 (1) (2009) 59-66. https://doi.org/10.1016/j.colsurfb.2009.01.005.
Maximino, M. D., Constantino, C. J. L., Oliveira Junior, O. N., Alessio, P., Synergy in the interaction of amoxicillin and methylene blue with dipalmitoyl phosphatidyl choline (DPPC) monolayers, Applied Surface Science 476 (2019) 493-500. https://doi.org/10.1016/j.apsusc.2019.01.065.
Tawfik, A. A., Noaman, I., El-Elsayyad, H., El-Mashad, N., Soliman, M., A study of the treatment of cutaneous fungal infection in animal model using photoactivated composite of methylene blue and gold nanoparticle, Photodiagnosis and Photodynamic Therapy 15 (2016) 59-69. https://doi.org/10.1016/j.pdpdt.2016.05.010.
Zakaria, A., Hamdi, N., Abdel-Kader, R. M., Methylene Blue Improves Brain Mitochondrial ABAD Functions and Decreases Aβ in a Neuroinflammatory Alzheimer’s Disease Mouse Model, Molecular Neurobiology 53 (2) (2016) 1220-1228. https://doi.org/10.1007/s12035-014-9088-8.
Broniatowski, M., Binczycka, M., Wójcik, A., Flasiński, M., Wydro, P., Polycyclic aromatic hydrocarbons in model bacterial membranes - Langmuir monolayer studies, Biochimica et Biophysica Acta (BBA) – Biomembranes 1859 (12) (2017) 2402-2412. https://doi.org/10.1016/j.bbamem.2017.09.017.
Purcaro, G., Moret, S., Conte, L. S., Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods, Talanta 105 (2013) 292-305. https://doi.org/10.1016/j.talanta.2012.10.041.
Macrae, J. D., Hall, K. J., Comparison of methods used to determine the availability of polycyclic aromatic hydrocarbons in marine sediment, Environmental Science & Technology 32 (23) (1998) 3809-3815. https://doi.org/10.1021/es980165w.
Kanaly, R. A., Harayama, S., Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria, Microbial Biotechnology 3 (2) (2010) 136-164. https://doi.org/10.1111/j.1751-7915.2009.00130.x.
Korchowiec, B., Corvis, Y., Viitala, T., Feidt, C., Guiavarch, Y., Corbier, C., Rogalska, E., Interfacial Approach to Polyaromatic Hydrocarbon Toxicity: Phosphoglyceride and Cholesterol Monolayer Response to Phenantrene, Anthracene, Pyrene, Chrysene, and Benzo[a]pyrene, Journal of Physical Chemistry B 112 (43) (2008) 13518-13531. https://doi.org/10.1021/jp804080h.
Zhang, Z. Y., Hao, C. C., Liu, H. Y., Zhang, X. G., Sun, R. G., Cholesterol mediates spontaneous insertion of Lycium barbarum polysaccharides in biomembrane model, Adsorption 26 (6) (2020) 855-862. https://doi.org/10.1007/s10450-019-00180-9.
Ahn, M., Park, J. S., Chae, S., Kim, S., Moon, C., Hyun, J. W., Shin, T., Hepatoprotective effects of Lycium chinense Miller fruit and its constituent betaine in CCl4-induced hepatic damage in rats, Acta Histochemica 116 (6) (2014) 1104-1112. https://doi.org/10.1016/j.acthis.2014.05.004.
Wnętrzak, A., Makyła-Juzak, K., Chachaj-Brekiesz, A., Lipiec, E., Romeu, N. V., Dynarowicz-Latka, P., Cyclosporin A distribution in cholesterol-sphingomyelin artificial membranes modeled as Langmuir monolayers, Colloids and Surfaces B: Biointerfaces 166 (2018) 286-294. https://doi.org/10.1016/j.colsurfb.2018.03.031.
Barenholz, Y., Cholesterol and other membrane active sterols: from membrane evolution to "rafts", Progress in Lipid Research 41 (1) (2002) 1-5. https://doi.org/10.1016/S0163-7827(01)00016-9.
Ohvo-Rekilä, H., Ramstedt, B., Leppimaki, P., Slotte, J. P., Cholesterol interactions with phospholipids in membranes, Progress in Lipid Research 41 (1) (2002) 66-97. https://doi.org/10.1016/S0163-7827(01)00020-0.
Crane, J. M., Tamm, L. M., Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes, Biophysical Journal 86 (5) (2004) 2965-2979. https://doi.org/10.1016/S0006-3495(04)74347-7.
Fan, J., Sammalkorpi, M., Haataja, M., Formation and regulation of lipid microdomains in cell membranes: Theory, modeling, and speculation, FEBS Letters 584 (9) (2010) 1678-1684. https://doi.org/10.1016/j.febslet.2009.10.051.
Leslie, M., Do lipid rafts exist? Science 334 (6059) (2011) 1046-1047. https://doi.org/10.1126/science.334.6059.1046-b.
Giri, R. P., Chakrabarti, A., Mukhopadhyay, M. K., Cholesterol-Induced Structural Changes in Saturated Phospholipid Model Membranes Revealed through X-ray Scattering Technique, Journal of Physical Chemistry B 121 (16) (2017) 4081-4090. https://doi.org/10.1021/acs.jpcb.6b12587.
Gupta, K. C., Kumar, M. N. V. R., An Overview on Chitin and Chitosan Applications with an Emphasis on Controlled Drug Release Formulations, Journal of Macromolecular Science, Part C 40 (4) (2000) 273-308. https://doi.org/10.1081/MC-100102399.
Liu, H., Du, Y., Wang, X., Sun, L., Chitosan kills bacteria through cell membrane damage, International Journal of Food Microbiology 95 (2) (2004) 147-155. https://doi.org/10.1016/j.ijfoodmicro.2004.01.022.
Pavinatto, A., Delezuk, J. A. M., Souza, A. L., Pavinatto, F. J., Volpati, D., Miranda, P. B., Campana-Filho, S. P., Oliveira Junior, O. N., Experimental evidence for the mode of action based on electrostaticand hydrophobic forces to explain interaction between chitosans and phospholipid Langmuir monolayers, Colloids and Surfaces B: Biointerfaces 145 (2016) 201-207. https://doi.org/10.1016/j.colsurfb.2016.05.001.
Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., Nasri, M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities, International Journal of Food Microbiology 185 (2014) 57-63. https://doi.org/10.1016/j.ijfoodmicro.2014.04.029.
Mellegård, H., Strand, S. P., Christensen, B. E., Granum, P. E., Hardy, S. P., Antibacterial activity of chemically defined chitosans: Influence of molecular weight, degree of acetylation and test organism, International Journal of Food Microbiology 148 (1) (2011) 48-54. https://doi.org/10.1016/j.ijfoodmicro.2011.04.023.
Krajewska, B., Wydro, P., Janczyk, A., Probing the Modes of Antibacterial Activity of Chitosan. Effects of pH and Molecular Weight on Chitosan Interactions with Membrane Lipids in Langmuir Films, Biomacromolecules 12 (11) (2011) 4144-4152. https://doi.org/10.1021/bm2012295.
Badawy, M. E. I., Rabea, E. I., Taktak, N. E. M., Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens, Carbohydrate Polymers 111 (2014) 670-682. https://doi.org/10.1016/j.carbpol.2014.04.098.