Chemometrics in analytical chemistry – an overview of applications from 2014 to 2018
Main Article Content
Abstract
A compilation of papers published between 2014 and 2018 was evaluated. Many papers related to multivariate calibration and classification have been reported, as well as, design of experiments applications and artificial intelligence methods. Some applications were highlighted, as medical and pharmaceutical, food analysis, fuels, biological and forensic for the chemometric techniques on this review. Most studies are related to developing methods for practical solutions in industry or routine analysis. A promising scenario is shown considering the number of published papers: a total of 832 for this period using the keywords, multivariate classification, multivariate calibration, analysis, chemometrics, prediction, analytical chemistry, artificial neural networks (ANN), design of experiments (DoE) and factorial design. An useful overview for Analytical Chemistry researchers´ combined with Chemometrics is presented in this review.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Olivieri, A. C., Introduction to multivariate calibration: A practical approach, Springer International Publishing, Switzerland, 1st ed., 2018, XVII-243. https://doi.org/10.1007/978-3-319-97097-4.
Lavine, B. K., Rayens, W. S., Classification: basic concepts, in: Brown, S. D., Tauler, R., Walczak, B. (Eds.), Comprehensive Chemometrics: Chemical and Biochemical Data Analysis, 3 Elsevier, Amsterdam, The Netherlands, (2009) 507-515.
Júnior, L. C. K., Viaene, J., Tuenter, E., Salton, J., Gasper, A. L., Apers, S., Andries, J. P. M., Pieters, L., Henriques, A. T., Heyden, Y. V., The use of chemometrics to study multifunctional indole alkaloids from Psychotria nemorosa (Palicourea comb. nov.). Part II: Indication of peaks related to the inhibition of butyrylcholinesterase and monoamine oxidase-A, J. Chromatogr. A 1463 (2016) 71-80. https://doi.org/10.1016/j.chroma.2016.08.005.
Jaccoulet, E., Boccard, J., Taverna, M., Azevedos, A. S., Rudaz, S., Smadja, C., High-throughput identification of monoclonal antibodies after compounding by UV spectroscopy coupled to chemometrics analysis, Anal. Bioanal. Chem. 408 (21) (2016) 5915-5924. https://doi.org/10.1007/s00216-016-9708-4.
Pedroza, R. H. P., Serrano, N., Diaz-Cruz, J. M., Arino, C., Esteban, M., Integration of Commercial screen-printed electrodes into a voltammetric electronic tongue for the analysis of aminothiols, Electroanalysis 28 (7) (2016) 1570-1577. https://doi.org/10.1002/elan.201501112.
Tao, L., Liu, B., Jin, Y., Sun, D., Liu, X., Chen, Y., Wu, Y., Characterization of Toad Skin for Traditional Chinese Medicine by Near-Infrared Spectroscopy and Chemometrics, Anal. Lett. 50 (8) (2017) 1292-1306. https://doi.org/10.1080/00032719.2016.1220562.
Li, J., Xu, B., Zhang, Y., Dai, S., Sun, F., Shi, X., Qiao, Y., Determination of Geniposide in Gardenia jasminoides Ellis fruit by near-infrared spectroscopy and chemometrics, Anal. Lett. 49 (13) (2016) 2063-2076. https://doi.org/10.1080/00032719.2015.1130714.
Langerodi, R. N., Ortmann, S., Wenzig, E. M. P., Bochkov, V., Zhao, Y. M., Miao, J. H., Saukel, J., Ladurner, A., Heiss, E. H., Dirsch, V. M., Bauer, R., Atanasov A. G., Assessment of anti-inflammatory properties of extracts from Honeysuckle (Lonicera sp. L., Caprifoliaceae) by ATR-FTIR spectroscopy, Talanta 175 (2017) 264-272. https://doi.org/10.1016/j.talanta.2017.07.045.
Junior, S. G., França, L. M., Pimentel, M. F., Albuquerque, M. M., Santana, D. P., Santana, A. K. M., Souza, J. A. L., Simões, S. S., A process analytical technology approach for the production of fixed-dose combination tablets of zidovudine and lamivudine using near infrared spectroscopy and chemical images, Microchem. J. 118 (2015) 252-258. https://doi.org/10.1016/j.microc.2014.07.009.
Kandpal, L. M., Cho, B. K., Tewari, J., Gopinathan, N., Raman spectral imaging technique for API detection in pharmaceutical microtablets, Sens. Actuators B: Chem. 260 (2018) 213-222. https://doi.org/10.1016/j.snb.2017.12.178.
Mazurek, S., Szostak, R., Quantification of active ingredients in pharmaceutical suspensions by FT Raman spectroscopy, Vib. Spectrosc. 93 (2017) 57-64. https://doi.org/10.1016/j.vibspec.2017.10.003.
Lyndgaard, L. B., Spåberg, R., Gilmour, C., Lyndgaard, C. B., Van Den Berg, F., A process analytical approach for quality control of dapivirine in HIV preventive vaginal rings by Raman spectroscopy, J. Raman Spectrosc. 45 (2) (2014) 149-156. https://doi.org/10.1002/jrs.4433.
Sparén, A., Hartman, M., Fransson, M., Johansson, J., Svensson, O., Matrix effects in quantitative assessment of pharmaceutical tablets using transmission Raman and near-infrared (NIR) spectroscopy, Appl. Spectrosc. 69 (5) (2015) 580-589. https://doi.org/10.1366/14-07645.
Naguib, I. A., Abdelaleem, E. A., Draz, M. E., Zaazaa, H. E., Linear support vector regression and partial least squares chemometric models for determination of Hydrochlorothiazide and Benazepril hydrochloride in presence of related impurities: A comparative study, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 130 (2014) 350-356. https://doi.org/10.1016/j.saa.2014.04.024.
da Silva, F. E. B., Flores, E. M. M., Parisotto, G., Müller, E. I., Ferrão, M. F., Green method by diffuse reflectance infrared spectroscopy and spectral region selection for the quantification of sulphamethoxazole and trimethoprim in pharmaceutical formulations, An. Acad. Bras. Ciênc. 88 (2016) 1-15. https://doi.org/10.1590/0001-3765201620150057.
Cantor, S. L., Gupta, A., Khan, M. A., Analytical methods for the evaluation of melamine contamination, J. Pharm Sci. 103 (2) (2014) 539-544. https://doi.org/10.1002/jps.23812.
Dabkiewicz, V. E., Abrantes, S. M. P., Cassella, R. J., Development of a non-destructive method for determining protein nitrogen in a yellow fever vaccine by near infrared spectroscopy and multivariate calibration, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 201 (2018) 170-177. https://doi.org/10.1016/j.saa.2018.04.042.
Haghighi, A. N., Hemmateenejad, B., Shamsipur, M., Determination of enantiomeric excess of some amino acids by second-order calibration of kinetic- fluorescence data, Anal. Biochem. 550 (2018) 15-26. https://doi.org/10.1016/j.ab.2018.04.004.
Chen, J., Peng, L., Han, Y., Yao, L., Zhang, J., Pan, T., A rapid quantification method for the screening indicator for β-thalassemia with near-infrared spectroscopy, Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy 193 (2018) 499-506. https://doi.org/10.1016/j.saa.2017.12.068.
Lin, W., Chai, Q., Chen, X., Li, Y., Effective identification of clinical bacterial pathogens by Fourier transform near-infrared spectroscopy, In: Proc - 2017 Chinese Autom. Congr. CAC (2017) 4587-4592. https://doi.org/10.1109/CAC.2017.8243589.
Anguebes, F., Pat, L., Ali, B., Guerrero, A., Córdova, A. V., Abatal, M., Garduza, J. P., Application of multivariable analysis and FTIR-ATR spectroscopy to the prediction of properties in campeche honey, J. Anal. Methods Chem. 2016 (2016) 1-14. https://doi.org/10.1155/2016/5427526.
Tahir, H. E., Xiaobo, Z., Tinting, S., Jiyong, S., Mariod, A. A, Near-Infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of sudanese honeys from different botanical origin, Food Anal. Methods 9 (9) (2016) 2631-2641. https://doi.org/10.1007/s12161-016-0453-2.
Se, K. W., Ghoshal, S. K., Wahab, R. A., Ibrahim, R. K. R., Lani, M. N., A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey, Food Res. Int. 105 (2018) 453-460. https://doi.org/10.1016/j.foodres.2017.11.012.
Chen, Q., Qi, S., Li, H., Han, X., Ouyang, Q., Zhao, J., Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 177-182. https://doi.org/10.1016/j.saa.2014.04.071.
Kandpal, L. M., Lohumi, S., Kim, M. S., Kang, J. S., Cho, B. K., Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds, Sens. Actuators B: Chem. 229 (2016) 534-544. https://doi.org/10.1016/j.snb.2016.02.015.
Talpur, M. Y., Hassan, S. S., Sherazi, S. T. H., Mahesar, S. A., Kara, H., Kandhro, A. A., Sirajuddin., A simplified FTIR chemometric method for simultaneous determination of four oxidation parameters of frying canola oil, Spectrochim. Acta - Part A 149 (2015) 656-661. https://doi.org/10.1016/j.saa.2015.04.098.
Uncu, O., Ozen, B., Prediction of various chemical parameters of olive oils with Fourier transform infrared spectroscopy, LWT - Food Sci. Technol. 63 (2) (2015) 978-984. https://doi.org/10.1016/j.lwt.2015.05.002.
Wu, Z., Li, H., Tu, D., Application of Fourier transform infrared (FT-IR) spectroscopy combined with chemometrics for analysis of rapeseed oil adulterated with refining and purificating waste cooking oil, Food Anal. Methods 8 (10) (2015) 2581-2587. https://doi.org/10.1007/s12161-015-0149-z.
Wójcicki, K., Khmelinskii, I., Sikorski, M., Sikorska, E. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils, Food Chem. 187 (2015) 416-423. https://doi.org/10.1016/j.foodchem.2015.04.046.
De Luca, M., Restuccia, D., Lisa, M., Puoci, F., Ragno, G., Chemometric analysis for discrimination of extra virgin olive oils from whole and stoned olive pastes, Food Chem. 202 (2016) 432-437. https://doi.org/10.1016/j.foodchem.2016.02.018.
Moreira, S. A., Sarraguça, J., Saraiva, D. F., Carvalho, R., Lopes, J. A., Optimization of NIR spectroscopy based PLSR models for critical properties of vegetable oils used in biodiesel production, Fuel 150 (2015) 697-704. https://doi.org/10.1016/j.fuel.2015.02.082.
Temiz, H. T., Tamer, U., Berkkan, A., Boyaci, I. H., Synchronous fluorescence spectroscopy for determination of tahini adulteration, Talanta 167 (2017) 557-562. https://doi.org/10.1016/j.talanta.2017.02.044.
Rech, A. M., Weiler, F. H., Ferrão, M. F., Determination of total sugar content in soy-based drinks using infrared spectroscopy and chemometrics, Food Anal. Methods 11 (7) (2018) 1986-1993. https://doi.org/10.1007/s12161-018-1170-9.
Smith, J. P., Schmidtke, L. M., Müller, M. C., Holzapfel, B. P., Measurement of the concentration of nutrients in grapevine petioles by attenuated total reflectance Fourier transform infrared spectroscopy and chemometrics, Aust. J. Grape Wine Res. 20 (2) (2014) 299-309. https://doi.org/10.1111/ajgw.12072.
Pereira, J. M., Leme, L. M., Perdoncini, M. R. F. G., Valderrama, P., Março, P. H., Fast Discrimination of milk contaminated with Salmonella sp. via near-infrared spectroscopy, Food Anal. Methods 11 (7) (2018) 1878-1885. https://doi.org/10.1007/s12161-017-1090-0.
Casarrubias-Torres, L. M., Meza-Márquez, O. G., Osorio-Revilla, G., Gallardo-Velazquez, T., Mid-infrared spectroscopy and multivariate analysis for determination of tetracycline residues in cow’s milk, Acta Vet. Brno. 87 (2) (2018) 181-188. https://doi.org/10.2754/avb201887020181.
Carvalho, B. M. A., Carvalho, L. M., Coimbra, J. S. R., Minim, L. A., Barcellos, E. S., Júnior, W. F. S., Detmann, E., Carvalho, G. G. P., Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration, Food Chem. 174 (2015) 1-7. https://doi.org/10.1016/j.foodchem.2014.11.003.
Santos, A. A., Barsanelli, P. L., Pereira, F. M. V., Pereira-Filho, E. R., Calibration strategies for the direct determination of Ca, K, and Mg in commercial samples of powdered milk and solid dietary supplements using laser-induced breakdown spectroscopy (LIBS), Food Res Int. 94 (2017) 72-78. https://doi.org/10.1016/j.foodres.2017.01.027.
Filgueiras, P. R., Portela, N. A., Silva, S. R. C., Castro, E. V. R., Oliveira, L. M. S. L., Dias, J. C. M., Neto, A. C., Romao, W., Poppi, R. J., Determination of saturates, aromatics, and polars in crude oil by c-13 nmr and support vector regression with variable selection by genetic algorithm, Energy and Fuels 30 (3) (2016) 1972-1978. https://doi.org/10.1021/acs.energyfuels.5b02377.
Rocha, J. T. C., Oliveira, L. M. S. L., Dias, J. C. M., Pinto, U. B., Marques, M. D. S. P., Oliveira, B. P., Filgueiras, P. R., Castro, E. V. R., Oliveira, M. A. L., Sulfur determination in brazilian petroleum fractions by mid-infrared and near-infrared spectroscopy and partial least squares associated with variable selection methods, Energy and Fuels 30 (1) (2016) 698-705. https://doi.org/10.1021/acs.energyfuels.5b02463.
Bian, X., Li, S., Lin, L., Tan, X., Fan, Q., Li, M., High and low frequency unfolded partial least squares regression based on empirical mode decomposition for quantitative analysis of fuel oil samples, Anal. Chim. Acta 925 (2016) 16-22. https://doi.org/10.1016/j.aca.2016.04.029.
Ardila, J. A., Luis, F., Soares, F., Antônio, M., Farias, S., Carneiro, R. L., Characterization of gasoline by Raman spectroscopy with chemometric analysis, Anal. Lett. 50 (7) (2017) 1126-1138. https://doi.org/10.1080/00032719.2016.1210616.
Parastar, H., Mostafapour, S., Azimi, G., Quality assessment of gasoline using comprehensive two-dimensional gas chromatography combined with unfolded partial least squares: A reliable approach for the detection of gasoline adulteration, J. Sep. Sci. 39 (2) (2016) 367-374. https://doi.org/10.1002/jssc.201500720.
Dadson, J., Pandam, S., Asiedu, N., Modeling the characteristics and quantification of adulterants in gasoline using FTIR spectroscopy and chemometric calibrations, Cogent Chem. 4 (1) (2018) 1-22. https://doi.org/10.1080/23312009.2018.1482637.
Mabood, F., Gilani, S. A., Albroumi, M., Alameru, S., Nabhani, M. M. O. A., Jabeen, F., Hussain, J., Al Harrasi, A., Boqué, R., Farooq, S., Hamaed, A. M., Naureen, Z., Khan, A., Hussain, Z., Detection and estimation of Super premium 95 gasoline adulteration with Premium 91 gasoline using new NIR spectroscopy combined with multivariate methods, Fuel 197 (2017) 388-396. https://doi.org/10.1016/j.fuel.2017.02.041.
Neves, A. C. O., Morais, C. L. M., Mendes, T. P. P., Vaz, B. G., Lima, K. M. G., Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study, Sci. Rep. 8 (2018) 3954–3963. https://doi.org/10.1038/s41598-018-22317-6.
Santos, P. M., Sánchez, M. N., Pavón, J. L. P., Cordero, B. M., Quantitative and qualitative analysis of polycyclic aromatic hydrocarbons in urine samples using a non-separative method based on mass spectrometry, Talanta 181 (2018) 373–379. https://doi.org/10.1016/j.talanta.2018.01.032.
Gilany, K., Mirzajani, F., Rezadoost, H., Sadeghi, M. R., Amini, M., Untargeted metabolomic profiling of seminal plasma in nonobstructive azoospermia men: A noninvasive detection of spermatogenesis, Biomed. Chromatogr. 31 (2017) 1-10. https://doi.org/10.1002/bmc.3931.
Boll, M. S., Doty, K. C., Wickenheiser, R., Lednev, I. K., Differentiation of hair using ATR FT-IR spectroscopy: a statistical classification of dyed and non-dyed hairs, Forensic Chem. 6 (2017) 1-9. https://doi.org/10.1016/j.forc.2017.08.001.
Monakhova, Y. B., Diehl, B. W. K., Fareed, J., Authentication of animal origin of heparin and low molecular weight heparin including ovine, porcine and bovine species using 1D NMR spectroscopy and chemometric tools, J. Pharm. Biomed. Anal. 149 (2018) 114-119. https://doi.org/10.1016/j.jpba.2017.10.020.
Chen, Y., Bai, Y., Xu, N., Zhou, M., Li, D., Wang, C., Hu, Y., Classification of Chinese vinegars using optimized artificial neural networks by genetic algorithm and other discriminant techniques, Food Anal. Methods 10 (2017) 2646-2656. https://doi.org/10.1007/s12161-017-0829-y.
Giannetti, V., Mariani, M. B., M., Mannino, P., Marini, F., Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy, Food Control 78 (2017) 215-221. https://doi.org/10.1016/j.foodcont.2017.02.036.
Cuevas, F. J., Pereira-Caro, G., Moreno-Rojas, J. M., Muñoz-Redondo, J. M., Ruiz-Moreno, M. J., Assessment of premium organic orange juices authenticity using HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics, Food Control 82 (2017) 203-211. https://doi.org/10.1016/j.foodcont.2017.06.031.
Wen, Y.Q., Zhang, J., Li, Y., Chen, L., Zhao, W., Zhou, J., Jin, Y., Characterization of chinese unifloral honeys based on proline and phenolic content as markers of botanical origin, using multivariate analysis, Molecules 22 (2017) 735-746. https://doi.org/10.3390/molecules22050735.
Portarena, S., Baldacchini, C., Brugnoli, E., Geographical discrimination of extra-virgin olive oils from the Italian coasts by combining stable isotope data and carotenoid content within a multivariate analysis, Food Chem. 215 (2017) 1-6. https://doi.org/10.1016/j.foodchem.2016.07.135.
Márquez, C., López, M. I., Ruisánchez, I., Callao, M. P., FT-Raman and NIR spectroscopy data fusion strategy for multivariate qualitative analysis of food fraud, Talanta 161 (2016) 80-86. https://doi.org/10.1016/j.talanta.2016.08.003.
Rodrigues Júnior, P. H., Oliveira, K. S., Almeida, C. E. R., De Oliveira, L. F. C., Stephani, R., Pinto, M. S., Carvalho, A. F., Perrone, Í. T., FT-Raman and chemometric tools for rapid determination of quality parameters in milk powder: Classification of samples for the presence of lactose and fraud detection by addition of maltodextrin, Food Chem. 196 (2016) 584-588. https://doi.org/10.1016/j.foodchem.2015.09.055.
Wakholi, C., Kandpal, L. M., Lee, H., Bae, H., Park, E., Kim, M. S., Mo, C., Lee, W.-H., Cho, B.-K., Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics, Sens. Actuators B. Chem. 255 (2018) 498-507. https://doi.org/10.1016/j.snb.2017.08.036.
Sandasi, M., Chen, W., Vermaak, I., Viljoen, A., Non-destructive quality assessment of herbal tea blends using hyperspectral imaging, Phytochem. Lett. 24 (2018) 94-101. https://doi.org/10.1016/j.phytol.2018.01.016.
Kimuli, D., Wang, W., Wang, W., Jiang, H., Zhao, X., Chu, X., Application of SWIR hyperspectral imaging and chemometrics for identification of aflatoxin B1 contaminated maize kernels, Infrared Phys. Technol. 89 (2018) 351-362. https://doi.org/10.1016/j.infrared.2018.01.026.
Cortés, V., Cubero, S., Aleixos, N., Blasco, J., Talens, P., Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy, Postharvest Biol. Technol. 133 (2017) 113-120. https://doi.org/10.1016/j.postharvbio.2017.07.015.
Shrestha, S., Knapic, M., Zibrat, U., Deleuran, L. C., Gislum, R., Single seed near-infrared hyperspectral imaging in determining tomato (Solanum lycopersicum L.) seed quality in association with multivariate data analysis, Sens. Actuators B Chem. 237 (2016) 1027-1034. https://doi.org/10.1016/j.snb.2016.08.170.
Santos, P. M., Pereira-Filho, E. R., Colnago, L. A. Detection and quantification of milk adulteration using time domain nuclear magnetic resonance (TD-NMR), Microchem. J. 124 (2016) 15-19. https://doi.org/10.1016/j.microc.2015.07.013.
Chen, Z., Gu, A., Zhang, X., Zhang, Z., Authentication and inference of seal stamps on Chinese traditional painting by using multivariate classification and near-infrared spectroscopy, Chemom. Intell. Lab. Syst. 171 (2017) 226-233. https://doi.org/10.1016/j.chemolab.2017.10.017.
Oliveira, V. S., Honorato, R. S., Honorato, F. A., Pereira, C. F., Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics, Forensic Sci. Int. 286 (2018) 121-127. https://doi.org/10.1016/j.forsciint.2018.03.001.
Martins, A. R., Talhavini, M., Vieira, M. L., Zacca, J. J., Braga, J. W. B., Discrimination of whisky brands and counterfeit identification by UV-Vis spectroscopy and multivariate data analysis, Food Chem. 229 (2017) 142-151. https://doi.org/10.1016/j.foodchem.2017.02.024.
Costa, V. C., Aquino, F. W. B., Paranhos, C. M., Pereira-Filho, E. R., Identification and classification of polymer e-waste using laser-induced breakdown spectroscopy (LIBS) and chemometric tools, Polym. Test. 59 (2017) 390-395. https://doi.org/10.1016/j.polymertesting.2017.02.017.
Silva, N. C., Pimentel, M. F., Honorato, R. S., Talhavini, M., Maldaner, A. O., Honorato, F. A., Classification of Brazilian and foreign gasolines adulterated with alcohol using infrared spectroscopy, Forensic Sci. Int. 253 (2015) 33-42. https://doi.org/10.1016/j.forsciint.2015.05.011.
Silva, M. P. F., Rodrigues e Brito, L., Honorato, F. A., Paim, A. P. S., Pasquini, C., Pimentel, M. F., Classification of gasoline as with or without dispersant and detergent additives using infrared spectroscopy and multivariate classification, Fuel 116 (2014) 151-157. https://doi.org/10.1016/j.fuel.2013.07.110.
Sinkov, N. A., Sandercock, P. M. L., Harynuk, J. J., Chemometric classification of casework arson samples based on gasoline content, Forensic Sci. Int. 235 (2014) 24-31. https://doi.org/10.1016/j.forsciint.2013.11.014.
Kovalishyn, V., Poda, G., Efficient variable selection batch pruning algorithm for artificial neural networks, Chem. Intell. Lab. Syst. 149 (2015) 10-16. https://doi.org/10.1016/j.chemolab.2015.10.005.
Li, S., Yang, B., Qi, F., Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model, Combust. Flame 168 (2016) 53-64. https://doi.org/10.1016/j.combustflame.2016.03.028.
Bian, X. H., Li, S. J., Fan, M. R., Guo, Y. G., Chang, N., Wang, J. J., Spectral quantitative analysis of complex samples based on the extreme learning machine, Anal. Methods 8 (23) (2016) 4674-4679. https://doi.org/10.1039/C6AY00731G.
Viejo, C. G., Fuentes, S., Torrico, D., Howell, K., Dunshea, F. R., Assessment of beer quality based on foamability and chemical composition using computer vision algorithms, near infrared spectroscopy and machine learning algorithms, J. Sci. Food Agr. 9 8 (2) (2018) 618-627. https://doi.org/10.1002/jsfa.8506.
Oliveira, H. C., Cunha, J. C. E., Rocha, J. C., Nunez, E. G. F., Rapid monitoring of beer-quality attributes based on UV-Vis spectral data, Int. J. Food Prop. 20 (2017) 1686-1699. https://doi.org/10.1080/10942912.2017.1352602.
Das, B., Sahoo, R. N., Pargal, S., Krishna, G., Verma, R., Chinnusamy, V., Sehgal, V. K., Gupta, V. K., Dash, S. K., Swain, P., Quantitative monitoring of sucrose, reducing sugar and total sugar dynamics for phenotyping of water-deficit stress tolerance in rice through spectroscopy and chemometrics, Spectrochim. Acta Part A 192 (2018) 41-51. https://doi.org/10.1016/j.saa.2017.10.076.
Li, Z., Zhang, X., Karanassios, V., Verification of the performance of artificial neural networks (ANNs) versus partial least squares (PLS) for spectral interference correction in optical emission spectrometry, Proceedings of SPIE 9118, Independent Component Analyses, Compressive Sampling, Wavelets, Neural Net, Biosystems, and Nanoengineering XII, 911812 (2014). https://doi.org/10.1117/12.2050326.
Li, Z., Zhang, X., Karanassios, V., How do artificial neural networks (ANNs) compare to partial least squares (PLS) for spectral interference correction in optical emission spectrometry? Proc. SPIE 9496, Independent Component Analyses, Compressive Sampling, Large Data Analyses (LDA), Neural Networks, Biosystems, and Nanoengineering XIII, 94960M (2015). https://doi.org/10.1117/12.2177516.
Li, H. H., Zhang, B., Hu, W. W., Liu, Y., Dong, C. W., Chen, Q. S., Monitoring black tea fermentation using a colorimetric sensor array-based artificial olfaction system, J. Food Process. Pres. 42 (1) (2018). https://doi.org/10.1111/jfpp.13348.
Dan, S. J., Yang, S. X., Tian, F. C., Den, L., Classification of orange growing locations based on the near-infrared spectroscopy using data mining, Intell. Autom. Soft Co. 22 (2) (2016) 229-236. https://doi.org/10.1080/10798587.2015.1095474.
Wang, J. M., Liao, X. Y., Zheng, P. C., Xue, S. W., Peng, R., Classification of Chinese herbal medicine by laser-induced breakdown spectroscopy with principal component analysis and artificial neural network, Anal. Lett. 51(4) (2018) 575-586. https://doi.org/10.1080/00032719.2017.1340949.
Wang, F., Wang, B., Wang, L., Xiong, Z. Y., Gao, W., Li, P., Li, H. J., Discovery of discriminatory quality control markers for Chinese herbal medicines and related processed products by combination of chromatographic analysis and chemometrics methods: Radix Scutellariae as a case study, J. Pharmaceut. Biomed. 138 (2017) 70-79. https://doi.org/10.1016/j.jpba.2017.02.004.
Ding, G. Y., Wang, Y. S., Liu, A. N., Hou, Y. Y., Zhang, T. J., Bai, G., Liu, C. X., From chemical markers to quality markers: an integrated approach of UPLC/Q-TOF, NIRS, and chemometrics for the quality assessment of honeysuckle buds, RSC Adv. 7 (36) (2017) 22034-22044. https://doi.org//10.1039/C6RA28152D.
Ito, S., Barchi, A. C., Escaramboni, B., Neto, P. D., Herculano, R. D., Borges, F. A., Miranda, M. C. R., Nunez, E. G. F., UV/Vis spectroscopy combined with chemometrics for monitoring solid-state fermentation with Rhizopus microsporus var. oligosporus, J. Chem. Technol. Biot. 92 (10) (2017) 2563-2572. https://doi.org/10.1002/jctb.5271.
Li, K. H., Guo, L. B., Li, J. M., Yang, X. Y., Yi, R. X., Li, X. Y., Lu, Y. F., Zeng, X. Y., Quantitative analysis of steel samples using laser-induced breakdown spectroscopy with an artificial neural network incorporating a genetic algorithm, Appl. Optics 56 (4) (2017) 935-941. https://doi.org/10.1364/AO.56.000935.
Zhang, P., Sun, L. X., Kong, H. Y., Yu, H. B., Guo, M. T., Zeng, P., A method derived from genetic algorithm, principal component analysis and artificial neural networks to enhance classification capability of laser-induced breakdown spectroscopy, Proc. SPIE 10461, AOPC 2017: Optical Spectroscopy and Imaging, 1046107 (24 October 2017). https://doi.org/10.1117/12.2281493.
Gurbanov, R., Bilgin, M., Severcan, F., Restoring effect of selenium on the molecular content, structure and fluidity of diabetic rat kidney brush border cell membrane, Biochim. Biophys. Acta – Biomembr. 1858 (4) (2016) 845-854. https://doi.org/10.1016/j.bbamem.2016.02.001.
Akbari Hasanjani, H. R., Sohrabi, M. R., Artificial neural networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid, Iran J. Pharm. Res. 16 (2) (2017) 478-489.
Guo, Y., Ni, Y. N., Chen, J. F., Kokot, S., A kinetic spectrofluorometric method, aided by chemometrics, for the analysis of sibutramine, indapamide and hydrochlorothiazide compounds found in weight-reducing tonic samples, Anal. Methods 8 (1) (2016) 197-204. https://doi.org/10.1039/C5AY02191J.
Leardi, R., Experimental design in chemistry: A tutorial, Anal. Chim. Acta 652 (2009) 161-172. https://doi.org/10.1016/j.aca.2009.06.015.
Barros Neto, B., Scarminio, I. S., Bruns, R. E. Como fazer experimentos, Bookman: Porto Alegre, 2010.
Pereira, F. M. V., Pereira-Filho, E. R., Aplicação de programa computacional livre em planejamento de experimentos: um tutorial, Quim. Nova 41 (2018) 1061-1071. https://doi.org/10.21577/0100-4042.20170254.
Pereira Filho, E. R., Planejamento fatorial em química: maximizando a obtenção de resultados. Edufscar: São Carlos, 2015.
Ferreira, S. L. C., Santos, W. N. L., Quintella, C. M., Barros Neto, B., Bosque-Sendra, J. M., Doehlert matrix: a chemometric tool for analytical chemistry – review, Talanta 63 (2004) 1061-1067. https://doi.org/10.1016/j.talanta.2004.01.015.
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., da Silva, E. G. P., Portugal, L. A., dos Reis, P. S., Souza, A. S., dos Santos, W. N. L., Box-Behnken desing: an alternative for the optimization of analytical methods, Anal. Chim. Acta 597 (2007) 179-186. https://doi.org/10.1016/j.aca.2007.07.011.
Ferreira, S. L. C., Introdução às técnicas de planejamento de experimentos. Vento Leste: Salvador, 2015.
Teófilo, R. F., Ferreira, M. M. C., Quimiometria II: planilhas eletrônicas para cálculos de planejamentos experimentais, um tutorial, Quim. Nova. 29 (2006) 338-350. http://quimicanova.sbq.org.br/imagebank/pdf/Vol29No2_338_25-DV04378.pdf.
Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M., Response surface methodology: process and product optimization using designed experiments, Wiley: Hoboken, 2009.
Hewavitharana, A. K., Abu Kassim, N. S., Shaw, P. N., Standard addition with internal standardization as an alternative to using stable isotope labelled internal standard to correct for matrix effects-comparison and validation using liquid chromatography – tandem mass spectrometric assay of vitamin D, J. Chromatogr. A 1553 (2018) 101-107. https://doi.org/10.1016/j.chroma.2018.04.026.
Andri, B., Dispas, A., Klinkenberg, R., Streel, B., Marini, R. D., Ziemons, E., Hubert, P., Is supercritical fluid chromatography hyphenated to mass spectrometry suitable for the quality control of vitamin D3 oily formulations? J. Chromatogr. A 1515 (2017) 209-217. https://doi.org/10.1016/j.chroma.2017.07.057.
Finetti, C., Sola, L., Elliott, J., Chiari, M., Synthesis of hydrogel via click chemistry for DNA electrophoresis, J. Chromatogr. A 1513 (2017) 226-234. https://doi.org/10.1016/j.chroma.2017.07.042.
Doriva-Garcia, N., Bones, J., Monitoring leachables from single-use bioreactor bags for mammalian cell culture by dispersive liquid-liquid microextraction followed by ultra high performance liquid chromatography quadrupole time of flight mass spectrometry. J. Chromatogr. A 1512 (2017) 51-60. https://doi.org/10.1016/j.chroma.2017.06.077.
Zimmermann, A., Totoli, E. G., Fernandes, F. H. A., Salgado, H. R. N., An eco-friendly and low-cost method for the quantification of cefazolin sodium in powder for injectable solution using thin-layer chromatography assisted by digital images, JPC-J. Planar Chromat. 30 (2017) 285-290. https://doi.org/10.1556/1006.2017.30.4.8.
Risoluti, R., Materazzi, S., MicroNIR/Chemometrics assessement of occupational exposure to hydroxyurea, Front. Chem. 6 (2018) 1-9. https://doi.org/10.3389/fchem.2018.00228.
Dunst, K. J., Trzcinski, K., Scheibe, B., Study of the NO2 sensing mechanism of PEDOT-RGO film using in situ Raman spectroscopy, Sens. Actuator B-Chem. 260 (2018) 1025-1033. https://doi.org/10.1016/j.snb.2018.01.089.
Hogmalm, K. J., Zack, T., Karlsson, A. K. O., Sjoqvist, A. S. L., Garbe-Schonberg, D., In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: an evaluation of N2O and SF6 as reaction gases, J. Anal. At. Spectrom. 32 (2017) 305-313. https://doi.org/10.1039/C6JA00362A.
Fellhauer, D., Gaona, X., Rothe, J., Altmaier, M., Fanghanel, T., Neptunium(VI) solubility in alkaline CaCl2 solutions: evidence for the formation of calcium neptunates Cax NpO3+x (s,hyd), Monatsh. Chem. 149 (2018) 237-252. https://doi.org/10.1007/s00706-017-2116-4.
Wang, X., He, H., Fan, X. G., Tang, M., Signal processing method for Raman spectra based on matching pursuit, Spectrosc. Spect. Anal. 38 (2018) 93-98. https://doi.org/10.3964/j.issn.1000-0593(2018)01-0093-06.
Liu, T., Zhang, W. J., Zhang, Z., Chen, M. L., Wang, J. H., Qian, X. H., Qin, W. J., Sensitive western-blot analysis of azide-tagged protein post translation modifications using thermoresponsive polymer self-assembly, Anal. Chem. 90 (2018) 2186-2192. https://doi.org/10.1021/acs.analchem.7b04531.
Orihara, K., Hikichi, A., Arita, T., Muguruma, H., Yoshimi, Y., Heparin molecularly imprinted Polymer thin film on gold electrode by plasma-induced graft polymerization for label-free biosensor, J. Pharmaceut. Biomed. 151 (2018) 324-330. https://doi.org/10.1016/j.jpba.2018.01.012.
Cinti, S., Mazzaracchio, V., Orturk, G., Moscone, D., Arduini, F., A lab-on-a-tip approach to make electroanalysis user-friendly and decentralized: detection of copper ions in river water, Anal. Chim. Acta 1029 (2018) 1-7. https://doi.org/10.1016/j.aca.2018.04.065.
Coutinho, M. S., Morais, C. L. M., Neves, A. C. O., Menezes, F. G., Lima, K. M. G., J., Colorimetric determination of ascorbic acid based on its interfering effect in the enzymatic analysis of glucose: an approach using smartphone image analysis, J. Braz. Chem. Soc. 28 (2017) 2500-2505. https://doi.org/10.21577/0103-5053.20170086.
Sandusky, P. O., Introducing undergraduate students to metabolomics using a NMR-based analysis of coffee beans, J. Chem. Educ. 94 (2017) 1324-1328. https://doi.org/10.1021/acs.jchemed.6b00559.
Ayed, L., Bakir, K., Ben Mansour, H., Hammami, S., Cheref, A., Bakhrouf, A., In vitro mutagenicity, NMR metabolite characterization of azo and triphenylmethanes dyes by adherents bacteria and the role of the “can” adhesion gene in activated sludge, Microb Pathog 103 (2017) 29-39. https://doi.org/10.1016/j.micpath.2016.12.016.