Study of the colloidal stability and optical properties of sunscreen creams
PDF
EPUB

How to Cite

Saito, G. P., Bizari, M., Cebim, M. A., Correa, M. A., Jafelicci Junior, M., & Davolos, M. R. (2019). Study of the colloidal stability and optical properties of sunscreen creams. Eclética Química, 44(2), 26–36. https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p26-36

Abstract

Sunscreen formulations containing inorganic/organic filters or mixture of them were synthesized by oil/water dispersion. The viscosity measurements show that sunscreen formulations are time-dependent non-newtonian fluids. In the CIELab color diagram, the white and/or beige colors presented by formulations do not compromise the aesthetics of the cosmetic product. UV-VIS absorption spectra show that sunscreen creams have high UV shielding ability, mainly the formulations containing inorganic and organic filters mixtures, which provide in vitro SPF and critical wavelength values recommended for UV protection.

https://doi.org/10.26850/1678-4618eqj.v44.2.2019.p26-36
PDF
EPUB

References

Baker, L. A., Marchetti, B., Karsili, T. N. V., Stavros, V. G., Ashfold, M. N. R., Photoprotection: extending lessons learned from studying natural sunscreens to the design of artificial sunscreen constituents, Chem. Soc. Rev. 46 (2017) 3770-3791. https://doi.org/10.1039/C7CS00102A.

Cole, C., Appa Y., Ou-Yang, H., A broad spectrum high-SPF photostable sunscreen with a high UVA-PF can protect against cellular damage at high UV exposure doses, Photodermatol. Photoimmunol. Photomed. 30 (2014) 212-219. https://doi.org/10.1111/phpp.12124.

Velasco, M. V. R., Sarruf, F. D., Salgado-Santos, I. M. N., Haroutiounian-Filho, C. A., Kaneki, T. M., Baby, A. R., Broad spectrum bioactive sunscreens, Int. J. Pharm. 363 (2008) 50-57. https://doi.org/10.1016/j.ijpharm.2008.06.031.

Fourtanier, A., Moyal, D., Seite, S., UVA filters in sun-protection products: regulatory and biological aspects, Photochem. Photobiol. Sci. 11 (2012) 81-89. https://doi.org/10.1039/C1PP05152K.

Sambandan, D. R., Ratner, D., Sunscreens: An overview and update, J. Am. Acad. Dermatol. 64 (2011) 748-758. https://doi.org/10.1016/j.jaad.2010.01.005.

Kockler, J., Oelgemöller, M., Robertson, S., Glass, B. D., Photostability of sunscreens, J. Photochem. Photobiol., C. 13 (2012) 91-110. https://doi.org/10.1016/j.jphotochemrev.2011.12.001.

Sohn, M., Herzog, B., Osterwalder, U., Imanidis, G., Calculation of the sun protection factor of sunscreens with different vehicles using measured film thickness distribution-Comparison with the SPF in vitro, J. Photochem. Photobiol., B. 159 (2016) 74-81. https://doi.org/10.1016/j.jphotobiol.2016.02.038.

Flor, J., Davolos, M. R., Correa, M. A., Sunscreens, Quim. Nova. 30 (2007) 153-158. https://doi.org/10.1590/S0100-40422007000100027.

Cross, S. E., Jiang, R., Benson, H. A. E., Roberts, M. S., Can Increasing the Viscosity of Formulations be used to Reduce the Human Skin Penetration of the Sunscreen Oxybenzone?, J. Invest. Dermatol. 117 (2001) 147-150. https://doi.org/10.1046/j.1523-1747.2001.01398.x.

Calixto, L. S., Maia Campos, P. M. B. G., Physical-Mechanical characterization of cosmetic formulations and correlation between instrumental measurements and sensorial properties, Int. J. Cosmet. Sci. 39 (2017) 527-534. https://doi.org/10.1111/ics.12406.

Hernández, J. M. G., Escalante, A., Vázquez, R. N. M., Delgado, E., González, F. J., Toríz, G., Use of Agave tequilana-lignin and zinc oxide nanoparticles for skin photoprotection, J. Photochem. Photobiol. B. 163 (2016) 156-161. https://doi.org/10.1016/j.jphotobiol.2016.08.027.

Gaspar, L. R., Maia Campos, P. M. B. G., Rheological behavior and the SPF of sunscreens, Int. J. Pharm. 250 (2003) 35-44. https://doi.org/10.1016/S0378-5173(02)00462-3.

Santoro, M. I. R. M., Oliveira, D. A. G. C. E., Kedor-Hackmann, E. R. M., Singh, A. K., The effect of packaging materials on the stability of sunscreen emulsions, Int. J. Pharm. 297 (2005) 197-203. https://doi.org/10.1016/j.ijpharm.2005.03.021.

Nasu, A., Otsubo, Y., Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil, J. Colloid Interface Sci. 296 (2006) 558-564. https://doi.org/10.1016/j.jcis.2005.09.036.

Rigo, L. A., Rascovetzki, R. H., Beck, R. C. R., Sunscreen formulations containing rice bran or soybean oil: rheological properties, spreadability and in vitro sun protection factor, Lat. Am. J. Pharm. 30 (2) (2011) 246-52. http://hdl.handle.net/10915/8130.

Sierra, A. F., Ramírez, M. L. G., Campmanya, A. C. C., Martínez, A. R., Naveros, B. C., In vivo and in vitro evaluation of the use of a newly developed melatonin loaded emulsion combined with UV filters as a protective agent against skin irradiation, J. Dermatol. Sci. 69 (2013) 202-214. https://doi.org/10.1016/j.jdermsci.2012.10.013.

Amnuaikit, T., Boonme, P., Formulation and characterization of sunscreen creams with synergistic efficacy on SPF by combination of UV filters, J. Appl. Pharm. Sci. 3 (2013) 1-5. https://doi.org/10.7324/JAPS.2013.3801.

Seixas, V. C., Serra, O. A., Stability of Sunscreens Containing CePO4: Proposal for a New Inorganic UV Filter, Molecules 19 (2014) 9907-9925. https://doi.org/10.3390/molecules19079907.

Technical Regulation MERCOSUR on ultraviolet filter list permitted for toiletries, cosmetics and perfumes. Brazilian Health Surveillance Agency. Resolution RDC No. 69. Ministry of Health (Brazil): National Press; 2016.

Binks, B. P., Fletcher, P. D. I., Johnson, A. J., Marinopoulos, I., Crowther, J., Thompson, M. A., How the sun protection factor (SPF) of sunscreen films change during solar irradiation, J. Photochem. Photobiol. A. 333 (2017) 186-199. https://doi.org/10.1016/j.jphotochem.2016.10.027.

ISO 24443:2012, Determination of sunscreen UVA photoprotection in vitro, International Organization for Standardization, 2012.

Diffey, B. L., A method for broad spectrum classification of sunscreens, Int. J. Cosmet. Sci. 16 (1994) 47-52. https://doi.org/10.1111/j.1467-2494.1994.tb00082.x.

Vand, V., Viscosity of solutions and suspensions. I. Theory, J. Phys. Colloid. Chem. 52 (1948) 277-299. https://pubs.acs.org/doi/pdf/10.1021/j150458a001.

Malkin, A.Y., Non-Newtonian viscosity in steady-state shear flows, J. Nonnewton. Fluid. Mech. 192 (2013) 48-65. https://doi.org/10.1016/j.jnnfm.2012.09.015.

Tambe, D. E., Sharma, M. M., The effect of colloidal particles on fluid-fluid interfacial properties and emulsion stability, Adv. Colloid Interface Sci. 52 (1994) 1-63. https://doi.org/10.1016/0001-8686(94)80039-1.

Tambe, D., Paulis, J., Sharma, M. M., Factors Controlling the Stability of Colloid-Stabilized Emulsions: IV. Evaluating the Effectiveness of Demulsifiers, J. Colloid Interface Sci. 171 (1995) 463-469. https://doi.org/10.1006/jcis.1995.1203.

Degen, A., Kosec, M., Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution, J. Eur. Ceram. Soc. 20 (2000) 667-673. https://doi.org/10.1016/S0955-2219(99)00203-4.

Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T., Grassian, V. H., Aggregation and Dissolution of 4 nm ZnO Nanoparticles in Aqueous Environments: Influence of pH, Ionic Strength, Size, and Adsorption of Humic Acid, Lagmuir. 27 (2011) 6059-6068. https://doi.org/10.1021/la200570n.

Lee, C. H., Moturi, V., Lee, Y., Thixotropic property in pharmaceutical formulations, J. Control. Release 136 (2009) 88-98. https://doi.org/10.1016/j.jconrel.2009.02.013.

Juszczak, L., Fortuna, T., Rheology of selected Polish honeys, J. Food. Eng. 75 (2006) 43-49. https://doi.org/10.1016/j.jfoodeng.2005.03.049.

Huang, B., Liang, S., Qu, X., The rheology of metal injection molding, J. Mater. Process. Technol. 137 (2003) 132-137. https://doi.org/10.1016/S0924-0136(02)01100-7.

Morrison, F. A., Experimental Data, In: Understanding rheology, first ed., Oxford University Press, New York, 2001, Ch. 6.

Loyalka, S. K., Riggs, C. A., Inverse problem in diffuse reflectance spectroscopy: Accuracy of the Kubelka-Munk equations, Appl. Spectrosc. 49 (1995) 1107-1110.

Pavia, D. L., Lampman, G. M., Kriz, G. S., Vyvyan, J. A., Ultraviolet spectroscopy, In: Introduction to spectroscopy, fourth ed., Cengage Learning, Belmont, 2009, Ch. 7.

Wetz, F., Routaboul, C., Lavabre, D., Garrigues, J. C., Lattes, I. R., Pernep, I., Denis, A., Photochemical Behavior of a New Long‐chain UV Absorber Derived from 4‐tert‐Butyl‐4′‐Methoxydibenzoylmethane, J. Photochem. Photobiol. 80 (2004) 316-321. https://doi.org/10.1111/j.1751-1097.2004.tb00089.x.

Porter, G., Suppan, P., Primary photochemical processes in aromatic molecules. Part 12.-Excited states of benzophenone derivatives, Trans. Faraday Soc. 61 (1965) 1664-1673. https://doi.org/10.1039/TF9656101664.

Stanfield, J., Osterwalder, U., Herzog, B., In vitro measurements of sunscreen protection, Photochem. Photobiol. Sci. 9 (2010) 489-494. https://doi.org/10.1039/B9PP00181F.

BASF Sunscreen Simulator, Prediction of SPF and UVA-Metrics. https://www.sunscreensimulator.basf.com/Sunscreen_Simulator/Input_show.action, 2018.

Wang, S. Q., Lim, H. W., Current status of the sunscreen regulation in the United States: 2011 Food and Drug Administration’s final rule on labeling and effectiveness testing, J. Am. Acad. Dermatol. 65 (2011) 863-869. https://doi.org/10.1016/j.jaad.2011.07.025.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2019 Eclética Química Journal

Metrics

PDF views
596
Apr 25 '19Apr 28 '19May 01 '19May 04 '19May 07 '19May 10 '19May 13 '19May 16 '19May 19 '19May 22 '1912
| |
Other format views
23
Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20265.0
|