Voltammetric method for the quantification of cadmium using non-commercial electrodes and minimal instrumentation

Main Article Content

Javier Ernesto Vilasó Cadre
Alejandro Céspedes Martínez
María de los Ángeles Arada Pérez
José Alejandro Baeza Reyes

Abstract

A voltammetric method for the cadmium quantification was developed using minimal instrumentation. A manual homemade potentiostat for linear voltammetry was used. An Ag reference electrode and auxiliary and working electrodes of writing graphite were employed for the electroanalysis. The electrolytic conditions for the quantification were stablished.  Linearity, detection and quantification limits, precision and accuracy were evaluated. The conditions for the quantification were 1 mol/L of KCl as supporting electrolyte, pH 5 and 10 s for the current sampling. The range of quantification was from 10-3 to 1.5∙10-2 mol/L. The linear correlation (r), determination (R2) and adjusted (R2adj.) coefficients were 0.9986, 0.9972 and 0.9970. The detection and quantification limits were 3∙10-4 mol/L and 10-3 mol/L. Results showed an acceptable repeatability, with coefficients of variation from 1.5 to 5.8 % depending of the concentration. Uncertainty associated with the cadmium concentration was in the range of 1.2∙10-4 to 7∙10-5 mol/L, diminishing with the increasing of the concentration. A good accuracy was observed, with recoveries between 86.84 and 109.64 %.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vilasó Cadre, J. E., Céspedes Martínez, A., Arada Pérez, M. de los Ángeles, & Baeza Reyes, J. A. (2019). Voltammetric method for the quantification of cadmium using non-commercial electrodes and minimal instrumentation. Eclética Química, 44(1), 53–61. https://doi.org/10.26850/1678-4618eqj.v44.1.2019.p53-61
Section
Original articles
Author Biographies

Javier Ernesto Vilasó Cadre, Universidad de Oriente

Chemistry Department. Faculty of Natural and Exact Sciences.

Alejandro Céspedes Martínez, Empresa Nacional de Análisis y Servicios Técnicos

Chemical-Physical Analysis Department

María de los Ángeles Arada Pérez, Universidad de Oriente

Chemistry Department. Faculty of Natural and Exact Sciences.

José Alejandro Baeza Reyes, Universidad Nacional Autónoma de México

Faculty of Chemistry

References

Skoog, D.A., Holler, F.J., Crouch, S.R., Principles of Instrumental Analysis, McGraw Hill, New York, 6th ed., 2008, Ch 25.

Bard, A.J., Faulkner, L.R., Electrochemical Methods, John Wiley & Sons Inc., New York, 2001, Ch 6.

Kounaves, S., Voltammetric Techniques, In: Handbook of Instrumental Techniques for Analytical Chemistry, Settle, F., ed., Prentice Hall, New York, 1997, Ch 37.

Leon, C., Optimización y puesta a punto de un método de mineralización de muestras ambientales para la determinación de ultratrazas de platino, rodio y paladio, Rev. Int. Contam. Ambie. 21 (3) (2005) 107-113.

Alvarado, A.L., Campo, J., Development and validation of a voltammetry method to determine traces of iron in water and other matrixes, Port. Electrochim. Acta 23 (1) (2005) 209-221.

Espinosa, E.R., Alvarado, A.L., Desarrollo y validación de un método voltamperométrico para determinar estaño total en agua, Rev. Int. Contam. Ambie. 28 (1) (2012) 61-72.

Farghaly, O.A., Abdel Hameed, R.S., Abu-Nawwas, H., Analytical application using modern electrochemical techniques, Int. J. Electrochem. Sci. 9 (2014) 3287-3318.

Moreno, Y.L., García, J.M., Chaparro, S.P., Cuantificación voltamétrica de plomo y cadmio en papa fresca, Rev. U.D.C.A Act. & Div. Cient. 19 (1) (2016) 97-104.

Nordberg, G., Metals: Chemical properties and toxicity, In: Encyclopedia of health and security in the work, Mayer, J., ed., Chantal Dufresne BA, Geneva, 1998, Ch 63.

Hernández, D., García, M.A., Alonso, J., Melgar, M.J., Pérez, M., Concentraciones de metales pesados (plomo y cadmio) en conservas de almeja, berberecho y navaja comercializadas en España, Ciencia y Tecnología Alimentaria 4 (3) (2004) 197-205.

Chang, C.Y., Yu, H.Y., Chen, J.J., Li, F.B., Zhang, H.H., Liu, C.P., Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China, Environ. Monit. Assess. 186 (3) (2014) 1547-1560. DOI: 10.1007/s10661-013-3472-0

Zhenning, Y., Lub, Y., Li, X., Silver ion-selective electrodes based on bis(dialkyldithiocarbamates) as neutral ionophores, Sens. Actuators B 122 (1) (2007) 174-181. DOI: 10.1016/j.snb.2006.05.020

Guo, S.X., Khoo, S.B., Highly selective and sensitive determination of silver(I) at a poly(8‐mercaptoquinoline) film modified glassy carbon electrode, Electroanalysis 11 (12) (1999) 891-898. DOI: 10.1002/(SICI)1521-4109(199908)11:12<891::AID-ELAN891>3.0.CO;2-9

Khan, F., Khanam, A., Study of complexes of cadmium with some L-amino acids and vitamin-C by voltammetric technique, Ecl. Quím. 33 (2) (2008) 29-36.

Economou, A., Bolis, S.D., Efstathiou, C.E., Volikakis, G.J., A “virtual” electroanalytical instrument for square wave voltammetry, Analytica Chimica Acta 467 (2) (2002) 179-188. DOI: 10.1016/S0003-2670(02)00191-5

Baltuano, O., Hernández, Y., Montoya, E., Desarrollo de un potenciostato analítico de bajo costo y altas prestaciones, Informe Científico 12 (2012) 165-169.

Vilasó, J.E., Arada, M.A., Baeza, J.A., Céspedes, A., Construction and metrological characterization of a minimal instrumentation micropolarograph, Port. Electrochim. Acta 34 (5) (2016) 309-320. DOI: 10.4152/pea.201605309

Nogueira, C.A., Delmas, F., New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction, Hydrometallurgy 52 (3) (1999) 267-287. DOI: 10.1016/S0304-386X(99)00026-2

Copeland, T. R., Christie, J.H., Skogerboe, R.K., Osteryoung, R.A., Effect of supporting electrolyte concentration in pulsed stripping voltammetry at the thin film mercury electrode, Analytical Chemistry 45 (6) (1973) 995-996.

Zeng, A., Liu, E., Tan, S. N., Zhang, S., Gao, J., Stripping voltammetric analysis of heavy metals at nitrogen doped diamond-like carbon film electrodes, Electroanalysis 14 (18) (2002) 1294-1298. DOI: 1040-0397/02/1809-1294

Lurie, J., Handbook of Analytical Chemistry, Mir Publishers, Moscow, 1975.

Dieker, J. W., Van Der Linden, W. E., Poppe, H., Behaviour of solid electrodes in normal and differential pulse voltammetric methods, Talanta 25 (1978) 151-155. DOI: 10.1016@0039-9140(78)80104-0

NC Guideline, Guidelines for validation of chemical testing methods, NC, NC Proyecto (2001) 23.

Choi, J., Ide, A., Truong, Y.B., Kyratzis, I.L., Caruso, R.A., High surface area mesoporous titanium–zirconium oxide nanofibrous web: a heavy metal ion adsorbent, J. Mater. Chem. A (2013) 5847-5853. DOI: 10.1039/c3ta00030c

Rajawat, D.S., Kumar, N., Satsangee, S.P., Trace determination of cadmium in water using anodic stripping voltammetry at a carbon paste electrode modified with coconut shell powder, Journal of Analytical Science and Technology 5 (19) (2014). DOI: 10.1186/s40543-014-0019-0

Uslu, B., Ozkan, S.A., Solid electrodes in Electroanalytical Chemistry: Present applications and prospects for high throughput screening of drug compounds, Combinatorial Chemistry & High Throughput Screening 10 (7) (2007) 495-513. DOI: 1386-2073/07

Thomson, M., The Characteristic Function, a method-specific alternative to the Horwitz Function, Journal of AOAC International 95 (6) (2012) 1803-1806.

Hechavarría, A., Arada, M.A., Estimación de la incertidumbre de la medición en análisis químico, un caso de estudio, Rev. Cubana Quím. 29 (1) (2017) 54-72.

EURACHEM/CITAC Guideline, Quantifying uncertainty in analytical measurement, EURACHEM/CITAC, CG4 (2000) 120.