Biodiesel from waste cooking oil: sodium carbonate modified sand as filter, TLC and the unmodified domestic microwave oven approach

Main Article Content

Sandro Luiz Barbosa
Savio Eduardo Oliveira Miranda
Bruna Kaicy Barbosa
Myrlene Ottone
Stanlei Ivair klein
Adriano Cesar Morais Baroni
Gabriela Ramos Hurtado

Abstract

Biodiesel is obtained by transesterification of animal and vegetable triglycerides (fats), and have several advantages over fossil fuel, perhaps the most important being its renewable source and its lack of pollutants such as aromatic and sulfur components. However, biodiesel from vegetable sources such as Soya beans is expensive, and it raises the question of planting for combustibles not for food. The most interesting alternative source for biodiesel is the non expensive waste cooking oil, WCO, which also brings the obvious benefit of transforming a severe pollutant into a green combustible. WCO consists of the triglycerides, but also contains left over food solids, which must be removed by filtration, mono and diglycerides, which are the source of the WCO free fatty acids (FFA), which must be converted to esters before the transesterification of the triglycerides, or, as usually reported, saponification of the final biodiesel mixture will occur.

Metrics

Metrics Loading ...

Article Details

How to Cite
Barbosa, S. L., Miranda, S. E. O., Barbosa, B. K., Ottone, M., klein, S. I., Baroni, A. C. M., & Hurtado, G. R. (2016). Biodiesel from waste cooking oil: sodium carbonate modified sand as filter, TLC and the unmodified domestic microwave oven approach. Eclética Química, 39(1), 120–130. https://doi.org/10.26850/1678-4618eqj.v39.1.2014.p120-130
Section
Original articles

References

B. K. Barnwal, M. P. Sharma, Renew. Sust. Energy Rev. 9 (2005) 363–78.

P. R. Muniyappa, S. C. Brammer, H. Noureddini, Bioresour. Technol. 56 (1996) 19–24.

M. P. Dorado, E. Ballesteros, F. J. Lopez, M. Mittelbach, Energy Fuel 18 (2004) 77–83.

G. Antolín, F. V. Tinaut, Y. Briceno, V. Castano, C. Perez, A. I. Ramirez, Bioresour. Technol. 83 (2002) 111–4.

Y. Zhang, M. A. Dube, D. D. McLean, M. Kates, Bioresour. Technol. 2003;89:1–16.

M. I Al-Widyan, A. O Al-Shyoukh, Bioresour. Technol. 85 (2002) 253–6.

G. M. Tashtoush, M. I. Al-Widyan, A. O. Al-Shyoukh, Energy Convers. Manage. 45 (2004) 2697–711.

M. Canakci, J. Van Gerpen, Trans. ASAE 46 (2003) 945–54.

Y. Zhang, M. A. Dube, D. D. McLean, M. Kates, Bioresour. Technol. 90 (2003) 229–40.

H. A. Farag, A. El-Maghraby, N. A. Taha, Fuel Process. Technol. 92 (2011) 507-510.

Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, JAOCS 78 (2001) 703–7.

Y. Watanabe, Y. Shimada, A. Sugihara, H. Noda, H. Fukuda, Y. Tominaga, JAOCS 77 (2000) 355–60.

Y. Watanabe, Y. Shimada, A. Sugihara, Y. Tominaga, J. Mol. Catal. B: Enzym 2002;17:151–5.

Y. Liu, Y. Yan, F. Hu, A. Yao, Z. Wang, F. Wei, AIChE J 56 (2010) 1659-16655.

Y. Chen, B. Xiao, J. Chang, Y. Fu, P. Lv, X. Wang, Energy Convers. Manage. 50 (2009) 668-673.

Y. Wang, S. Ou, P. Liu, Z. Zhang, Energy Convers. Manage. 48 (2007) 184-188.

P. D. Patil, V. G. Gude, S. Deng, Ind. Eng. Chem. Res. 48 (2009) 10850-10856.

Y. Wang, J. Nie, M. Zhao, S. Ma, L. Kuang, X. Han, S. Tang, Energy Fuels 24 (2010) 2104-2108.

A. Brito, M. E. Borges, M. Otero, Energy fuels 21 (2007) 3280-3283.

F. Cao, Y. Chen, F. Zhai, J. Li, J. Wang, X. Wang, S. Wang, W. Zhu W, Biotechnology and Bioengineering 101 (2008) 93-100.

J. Li, X. Wang, W. Zhu, F. Cao, Zn1.2H0.6PW12O40 ChemSusChem 2 (2009) 177-183.

C. Komintarachat, S. Chuepeng, Ind. Eng. Chem. Res. 48 (2009) 9350-9353.

B. Fu, L. Gao, L. Niu, R. Wei, G. Xiao, Energy Fuels 23 (2009) 569-572.

M. K. Lan, K. T. Lee, Fuel Process. Technol. 92 (2011) 1639-1645.

M. A. Olutoye, B. H. Hameed, Bioresour. Technol. 102 (2011) 3819-3826.

Z. Wen, X. Yu, S-T. Tu, J. Yan, E, Dahlquist, Bioresour. Technol. 102 (2010) 9570-9576.

M. Koberg, R. Abu-Much, A. Gedanken, Bioresour. Technol. 102 (2011) 1073-1078.

A. Demirbas, Energy Convers. Manage. 50 (2009) 923-927.

P. Patil, S. Deng, J. I. Rhodes, P. J. Lammers, Fuel 89 (2010) 360-364.

X. Meng, G. Chen, Y. Wang, Fuel Process. Technol. 89 (2008) 851-857.

L. F. Bautista, G. Vicente, R. Rodríguez, M. Pacheco, Biomass Bioenergy 33 (2009) 862-872.

C. B. H. Chua, H. M. Lee, J. S. C. Int. J. Life Cycle Asses. 15 (2010) 417-423.

P. Kumaran, N. Mazlini, I. Houssein, M. Nazrain, M. Khairul, Energy 36 (2011) 1386-1393.

A. B. Chhetri, K. C. Watts, M. R. Islam, Energies 1 (2008) 3-18.

T. Sakai, A. Kawashima, T. Koshikawa, Bioresour. Technol. 100 (2009) 3268-3276.

G. Çayli, S. Küsefoglu, Fuel Process. Technol. 89 (2008) 118-122.

M. Kouzu, S. Yamanaka, T. Kazuno, M. Tajika, Y. Aihara, Y. Sugimoto, J. Hidaka, J. Japan Petrol. Inst. 50 (2007) 79-86.

L. S. G. Teixeira, J. C. R. Assis, D. R. Mendonça, I. T. V. Santos, P. R. B. Guimarães, L. A. M. Pontes, J. S. R. Teixeira, Fuel Process. Technol. 90 (2009) 1164-1166.

S. H. Hingu, P. R. Gogate, V. K. Rathod, Ultrason. Sonochem. 17 (2010) 827-832.

L. T. Thanh, K. Okitsu, Y. Sadanaga, N. Takenaka, Y. Maeda, H Bandow, , Bioresour. Technol. 101 (2010) 5394-5401.

X. Fan, X. Wang, F. Chen, Fuels Energ. Sci. J. 3 (2010) 23-27.

V. Lertsathapornsuk, R. Pairintra, K. Aryusuk, K. Krisnangkura, Fuel Process. Technol. 89 (2008) 1330-1336.

A. G. S. Prado, E. A. Faria, P. M. Padilha, Quim. Nova 28 (2005) 544-547.

S. L. Barbosa, M. J. Dabdoub, G. R. Hurtado, S. I. Klein, A. C. M. Baroni, C. R. Cunha, Applied Catalysis A: General 313 (2006) 146–150.

S. L. Barbosa, G. R. Hurtado, S. I. Klein, V. L. Junior, M. J. Dabdoub, C. F. Guimarães, A. C. M. Baroni, Applied Catalysis A: General 338 (2008) 9–13.

T. M. Barnard, N.E. Leadbeater, M. B. Boucher, L. M. Stencel, B. A. Wilhite, Energy Fuels 21 (2007) 1777-1778.

N. E. Leadbeater, L. M. Stencel, Energy Fuels 20 (2006) 2281-2283.

M. Z. Duz, A. Saydut, G. Ozturk, Fuel Process. Technol. 92 (2011) 308-313.

S. Zhang, Y.G. Zu, Y. J. Fu, M. Luo, D. Y. Zhang, T. Efferth, Bioresour. Technol. 101 (2010) 931-936.

J.M. Encinar, F. Jua, J. F Gonzalez, A. Rodriguez-Reinares, Fuel Process. Technol. 88 (2007) 513-522.