Dehydration and volatilization non-isothermic kinetic of the solid state aluminium 8-hydroxyquinolinate
Main Article Content
Abstract
Al(C9H6ON)3.2.5H2O was precipitated from the mixture of an aqueous solution of aluminium ion and an acid solution of 8-hydroxyquinoline, by increasing the pH value to 9.5 with ammonia aqueous solution. The TG curves in nitrogen atmosphere present mass losses due to dehydration, partial volatilisation (sublimation plus vaporisation) of the anhydrous compound followed by thermal decomposition with the formation of a mixture of carbonaceous and residues. The relation between sublimation and vaporisation depends on the heating rate used. The non isothermic integral isoconventional methods as linear equations of Ozawa-Flynn-Wall and Kissinger-Akahira-Sunose (KAS) were used to obtain the kinetic parameters from TG and DTA curves, respectively. Despite the fact that both dehydration and volatilisation reactions follow the linearity by using both methods, only for the volatilisation reaction the validity condition, 20£ E/RT£ 50, was verified.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
Akahira, T.; Sunose, T. Res. Report Chiba Inst. Technol., v.16, p.22, 1971. [ Links ]
Alexeév, V. Análise quantitativa, 3. ed. Porto: Lopes da Silva, 1983. p. 423 [ Links ]
Basset, J.; Denney, R. C.; Jeffery, O H.; Mendhan, J. VOGEL Análise Inorgânica Quantitativa, 4. ed. Rio de Janeiro: Guanabara, 1981 p. 176, 292, 323-4 [ Links ]
Borrel, M.; Paris, R. Analyse thermogravimetrique des principaux oxinates. Anal. Chim. Acta, v.4, p.267,1950. [ Links ]
Budrugeac, P.; Segal, E. Some problems concerning the evaluation of the activation energy from non-isothermal data for reactions with activation parameters deoendent on the degree of conversion. ICTAC News, v.33, n.1, p.39, 2000. [ Links ]
Chalmers, R. A; Basit, M. A. A critical study of 8-hydroxyquinoline as a gravimetric reagent for aluminium. Analyst, v.92, p.680, 1967. [ Links ]
Charles, R. G. A heat stabilities of trivalent metal 8-quinolinol quelates in inert atmospheres. Anal. Chim. Acta, v.31, n.5, p.405, 1964. [ Links ]
Charles, R. G.; Langer, A. Heat stabilities and volatilities of metal chelates derived from 8-hydroxyquinoline. J. Phys. Chem., v.63, p.603, 1959. [ Links ]
Cheng, K. L.; Ueno, K.; Imamura, T. Handbook of organic analytical reagents, Florida: CRC press, 1982, p. 253-267 [ Links ]
Dollimore, D; Reading, M. Thermal Methods. Part I. In: KOLTHOFF, W. Treatise on analytical chemistry. v.13, 2.ed. New York: John Wiley, 1993, p.37-61 [ Links ]
Doyle, C. D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci., v.6, n.24, p.639, 1962. [ Links ]
Flynn, J.H.; Wall, L.A. A quick direct method for the determination of activation energy from thermogravimetric data. Polym. Lett., v.4, p.323, 1966. [ Links ]
Keattch, C. J. A thermogravimetrric study of aluminium oxinate. Talanta, v.13, p.543, 1964. [ Links ]
Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem., v.29, p.1702, 1957. [ Links ]
Ozawa, T. A new method of analysing thermogravimetric data. Bull. Chem. Soc. Japan, v.38, n.11, p.1881, 1965. [ Links ]
Toop, D. J. Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamenals. IEEE Trans. Electr. Insul., v. EI-6, n.1, p.2, 1971. [ Links ]
Vyazovkin, S.; Dollimore, D. Linear and nonlinear procedures in isoconversional computation of the activation energy of nonisothermal reaction in solid. J. Chem. Inform. Computer Sci., v.36, p.42, 1996. [ Links ]
Wendlandt, W. W.; Horton, G. R. Differential thermal analysis of some metal chelates of 8-quinolinol and substituted 8-quinolinols. Anal. Chem., v.34, n.9, p1098, 1962. [ Links ]