Solving Schrödinger equation for two dimensional potentials using supersymmetry
PDF

Keywords

Quantum mechanics
Supersymmetry
Bidimensional systems
Schrödinger equation

How to Cite

Drigo Filho, E. (1997). Solving Schrödinger equation for two dimensional potentials using supersymmetry. Eclética Química, 22(1), 67–73. https://doi.org/10.26850/1678-4618eqj.v22.1.1997.p67-73

Abstract

The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schrödinger equation for a bidimensinal potential. This potential can be applied in several systems in physical and chemistry context , for instance, it can be used to study benzene molecule.

https://doi.org/10.26850/1678-4618eqj.v22.1.1997.p67-73
PDF

References

ADHIKARI, R., DUTT, R., VARSHNI, Y.P. On the averaging of energy eigenvalues in the supersymmetric WkB Method. Phys. Lett., v.A131, p.217, 1988. [ Links ]

BOSHI-FILHO, H., SOUZA, M., VAIDYA, A.N. General potentials described by so (2,1) dynamical algebra in parabolic coordinate systems. J. Phys., v.A24, p.4981, 1991. [ Links ]

DRIGO FILHO, E. Supersymmetric quantum mechanics and two-dimensional systems. Braz. J. Phys., v.22, p.45, 1992. [ Links ]

DRIGO FILHO, E. Supersymmetric solution for two-dimensional schrödinger equation. Mod. Phys. Lett., v.A8, p.63, 1993. [ Links ]

DRIGO FILHO, E., RICOTTA, R.M. Supersymmetry, variational method and hulthén potential. Mod. Phys. Lett., v.A10, p.1613, 1995. [ Links ]

GEDENSHTEIN, L.E., KRIVE, I.V. Supersymmetry in quantum mechanics Sov. Phys. USP, v. 28, p.645, 1985. [ Links ]

GERRY, C.C. Dinamical group for ring potential. Phys. Lett., v.All8, p.445, 1986. [ Links ]

NIETO, M.M. Relationship between supersymmetry and the inverse method in quantum mechanics. Phys. Lett., v.B145, p.208, 1984. [ Links ]ALVES, N.A., DRIGO FILHO, E. The factorisation method and supersymmetry. J. Phys., v.A21, p.3215, 1988. [ Links ]

SHIFMAN, M.A. Supersymmetric quantum mechanics and partial algebraization of the spectral problem. Int. J. Mod. Phys., v.A4, p.3305; 1989. [ Links ]DRIGO FILHO, E., RICOTTA, R.M. Supersymmetric quantum mechanics and higber exited states of a non-polynomial potential. Mod. Phys. Lett. v.A4, p.2283, 1989. [ Links ]

SUKUMAR, C.V. Supersymmetric quantum mechanics of one-dimensional systems J. Phys. v.A18, p. 2917, 1985. [ Links ]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2018 Eclética Química Journal

Metrics

PDF views
98
Jan 1998Jul 1998Jan 1999Jul 1999Jan 2000Jul 2000Jan 2001Jul 2001Jan 2002Jul 2002Jan 2003Jul 2003Jan 2004Jul 2004Jan 2005Jul 2005Jan 2006Jul 2006Jan 2007Jul 2007Jan 2008Jul 2008Jan 2009Jul 2009Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202611
|