Obtenção da fase peroviskita via microemulsão

Main Article Content

Leandro Fernandes
Miguel Jafelicci Junior
Ricardo Henrique Moreton Godoi
Henrique Emílio Zorel Junior

Abstract

Pequenas partículas de fase peroviskita de BaMnO3 foram preparadas por dois métodos: a rota da coprecipitação convencional (RCC) e o método convencional de microemulsão (MCM). As técnicas instrumentais utilizadas para caracterizar as amostras foram: microscopia eletrônica de varredura (SEM), difratometria de raios X (XRD), termogravimetria (TG) e análise térmica diferencial (DTA). A síntese de materiais em sistemas coloidais auto-organizados tem por objetivo aumentar a homogeneidade de tamanho e forma das partículas. Nos últimos anos aumentou a busca por materiais mais uniformes visando o aperfeiçoamento da microestrutura. A rota de microemulsão é um método alternativo para a síntese de materiais porque permite o controle da relação entre as concentrações de água e do tensoativo, (w), o qual controla o tamanho das gotículas de microemulsão denominadas microreatores. Peroviskita pura obtida de microemulsão forma-se em temperatura menor do que a fase precipitada, e resulta.em partículas com distribuição de tamanho mais adequada, de aproximadamente 0,1 mm de diâmetro comparado com a média de 0,5 mm das partículas coprecipitadas.

Metrics

Metrics Loading ...

Article Details

How to Cite
Fernandes, L., Jafelicci Junior, M., Godoi, R. H. M., & Zorel Junior, H. E. (2002). Obtenção da fase peroviskita via microemulsão. Eclética Química, 27(1SI), 125–139. https://doi.org/10.26850/1678-4618eqj.v27.1SI.2002.p125-139
Section
Original articles

References

BARNICKEL P. et al. Sized tailoring of silver colloids by reduction in W/O microemulsions. J. Colloid Interface Sci., v.148, p.80-90, 1992.

BEALES, T.P. et al. The role of BaMnO3-x in the formation of YBaMn2O6-x. J. of Mater. Sci.Lett., v.16, p. 663-664, 1997.

HARDY, W.B. Structures cristallines de deux variétés allotropiques de manganite de baryum. nouvelle structure ABO3. Acta Crystallogr., v. 15, p.179-182, 1962.

LÓPEZ-QUINTELA M. A. et al. Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B., v. 101, n. 41, 1997.

LÓPEZ–QUINTELA M. A. et al. Chemical reactions in microemulsions: a powerful method to obtain ultrafine particles. J. Colloid Interface Sci., v. 158, p. 446-451, 1993.

OVERBEEK, J.Th.G. Microemulsions, a field at the border between lyophobic and lyophilic colloids. Faraday Discuss., v. 65, p. 7-19, 1978.

RIVAS, J. et al. Preparation of magnetic fluids with particles obtained in microemulsions. IEEETrans. Magn., v. 33, n. 5, 1997.

RIVAS, J. et al. Syntesis of yttrium iron garnet nanoparticles via coprecipitation in microemulsion. J. Mater. Chem., v. 7, n. 3, p. 501-504, 1997.

SCHOLDER, R. Uber verbindungen mit 4wertigem eisen. Z. Elektrochem., v. 56, p. 879-882, 1952.

SHAH, D. O. et al. Structure and magnetic properties of nanoparticles of barium ferrite synthesized using microemulsion processing. Colloid Surfaces A,v. 80, p. 69-75, 1993.

SHAH, D. O. et al. Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J. Magn. Magn. Mater., v. 163, p.243-248, 1996.

SHARMA, M.K.; SHAH, D. O., In SHAH, D. O. (Ed.). Macro- and microemulsions. Washington DC: American Chemical Society, 1985. p.1-15.

SHULMAN, J.H. et al. Mechanism of formation and structure of micro-emulsions by eletron microscopy. J. Phys. Chem., v.63, p. 1677-1680, 1959.

TAKARASHI, J. et al. Preparation of LaNiO3 powder from coprecipitated lanthanum-nickel oxalates. J. Mater. Sci., v. 25, p. 1557-1562, 1990.

THE ELETRICAL engeneering handbook. Boca Raton: CRC Press. 1993.

WANG, J. et al. Ultrafine barium titanate powders via microemulsion processing routes, J. Amer. Ceram. Soc., v. 82, p. 873-881, 1999.

XU, X.L. et al. A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles. Mater. Sci. Eng. B., v. 77, p. 207-209, 2000.