Abstract
E-Lychnophoric acid 1, its derivative ester 2 and alcohol 3 killed 100% of trypomastigoteblood forms of Trypanosoma cruzi at the concentrations of 13.86, 5.68, and 6.48 μg/mL, respectively.
Conformational distribution calculations (AM1) of 1, 2 and 3 gave minimum energies for the conformers
a, b, c, and d, which differ from each other only in the cyclononene ring geometry. Calculations (DFT/
BLYP/6-31G*) of geometry optimization and chemical properties were performed for conformers of 1, 2,
and 3. The theoretical results were numerically compared to the trypanocidal activity. Calculated values
of atomic charge, orbital population, and vibrational frequencies showed that the C-4–C-5 π-endocyclic
bond does not affect the trypanocidal activity of the studied compounds. Nevertheless, the structure of
the group at C-4 strongly influences the activity. However, the theoretical results indicated that the intra-
ring (C-1 and C-9) and π-exocycle (C-8 and C-14) carbons of caryophyllene-type structures promote
the trypanocidal activity of these compounds.
References
M. Sadigursky. Mem. Inst. Oswaldo Cruz 94 [S I] (1999)
K. S. Calabrese, A. S. R. C. Paradela, T. Z. Valle, R. C.
Todesco, L. Leonardo, R. A. Mortara, S. C. G. Costa.
Pathologie Biologie 51 (2003) 129.
K. S. Calabrese, A. S. R. C. Paradela, T. Z. Valle, R. C.
Todesco, L. Leonardo, R. A. Mortara, S. C.G. Costa.
Immunopharmacology 47 (2000) 1.
E. L. Malchiodi. Vaccine 22 (2003) 77.
V. Nussenzweig, R. Sonntag, A. Bianealana, J. L. P. Freitas,
V. Amato-Neto, J. Kloetzel. Hospital 4 (1953) 731.
J. M. Rezende, V. Zupelli, M. G. Bufutto. Rev. Goiana de
Med. 11 (1965) 35.
M. Thomas, D. G. MacPhee. Mutation Res. 14 (1984)
E. Chiari, D. S. Duarte, D. S. Raslan, D. A. Saúde, K. S.
P. Perry, M. A. D. Boaventura, T. S. M. Grandi, J. R. Stehmann,
A. M. G. Anjos, A. B. Oliveira. Phytotherapy Res. 10 (1996)
M. B. S. Cerqueira, J. T. Souza, R. A. Júnior, A. B. F.
Peixoto. Ciência e Cultura 39 (1987) 551.
D. S. Duarte. Ph.D. Thesis, Universidade Federal de
Minas Gerais, Brazil, 1999.
A. B. Oliveira, D. A. Saúde, K. S. P. Perry, D. S. Duarte,
D. S. Raslan, M. A. D. Boaventura, E. Chiari. Phytotherapy
Res. 10 (1996) 292.
D. Silveira, J. D. Souza-Filho, A. B. Oliveira, D. S.
Raslan. Eclética Química 30(1) (2005) 37.
F. D. Hostettler, M. K. Seikel. Tetrahedron 25 (1969) 2325.
P. Karrer, G. Widmark. Helvetica Chimica Acta 34 (1951) 34.
TITAN; Tutorial and User’s Guide; Wavefunction, Inc. &
Schrödinger, Inc., USA, 1999.
Gaussian 03; User’s Reference; Gaussian, Inc., USA,
M. J. S. Dewar, E. G. Zoebish, E. F. Healy, J. J. P.
Stewart. J. Am. Chem. Soc. 107 (1985) 902.
R. G. Parr, W. Yang, Density Functional Theory of Atoms
and Molecules, Oxford: New York, 1989.
A. D. Becke Phys. Rev. A 38 (1988) 3098.
C. Lee, W. Yang, R. G. Parr. Phys. Rev. B 37 (1988)
R. Ditchfield, W. J. Hehre, J. A. Pople, J. Chem. Phys. 54
(1971) 724.
W. J. Hehre, R. Ditchfield, J. A. Pople. J. Chem. Phys. 56
(1972) 2257.
P. C. Hariharan, J. A. Pople. Mol. Phys. 27 (1974) 209.
M. S. Gordon, Chem. Phys. Lett. 76 (1980) 163.
P. C. Hariharan, J. A. Pople. Theor. Chim. Acta 28 (1973)
J. D. Dunitz. Pure Appl. Chem. 25 (1971) 495.
F. A. L. Anet, J. J. Wagner. J. Am. Chem. Soc. 93 (1971)
R. F. Bryan, J. D. Dunitz. Helv. Chem. Acta 43 (1960) 1.
F. A. L. Anet, J. Krane. Isr. J. Chem. 20 (1980) 72.
O. V. Dorofeeva, V. S. Mastryukov, N. L. Allinger, A.
Almenningen. J. Phys. Chem. 94 (1990) 8044.
E. L. Eliel, S. H. Wilen, L. N. Mander. Stereochemistry
of Organic Compounds. Wiley: New York, 1994.
V. Prelog. Bull. Soc. Chim. Fr. (1960) 1433.
J. Sicher. Prog. Stereochem. 3 1962 202.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2018 Eclética Química Journal