Ecotoxicity of Malathion® 500 CE before and after UVC radiation and UV/H2O2 treatment

Main Article Content

Eliane Adams
Vinicius de Carvalho Soares de Paula
Rhaissa Dayane Carneiro
Rubia Matos de Lima
Monike Felipe Gomes
Wanessa Algarte Ramsdorf
Adriane Martins de Freitas

Abstract

Since 2008, Brazil has been the largest consumer of agrochemicals in the world, using pesticides to combat pests and vectors, impacting both microbiota and human health. Aiming at the degradation of the contaminants present in the environment, treatments by advanced oxidative processes are based on the synthesis of free radicals that allow the degradation of the pollutant. Among these processes are included UV/H2O2. By evaluating the ecotoxicity and phytotoxicity of the commercial Malathion® 500 CE product, using Aedes aegypti larvae and Lactuca sativa seed, the high toxicity of this formulation was observed. EC50 values for A. aegypti being equal to 0.4 μg L-1 and for L. sativa equal to 550 μg L-1. The commercial agrochemical degradation was carried out by UVC radiation and UV/H2O2, and the toxicity was evaluated after 30 and 120 minutes. After both treatments, the percentage of immobility was zero for A. aegypti, inferring the efficiency of the processes. However, for L. sativa, no treatment was able to remove or reduce initial toxicity.

Metrics

Metrics Loading ...

Article Details

How to Cite
Adams, E., de Paula, V. de C. S., Carneiro, R. D., de Lima, R. M., Gomes, M. F., Ramsdorf, W. A., & Martins de Freitas, A. (2018). Ecotoxicity of Malathion® 500 CE before and after UVC radiation and UV/H2O2 treatment. Eclética Química, 43(2), 44–50. https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p44-50
Section
Original articles

References

Diretoria de Vigilância Epidemiológica. Orientações para o uso de Malathion Emulsão Aquosa - EA 44 % para o controle de Aedes aegypti em aplicações espaciais a Ultra Baixo Volume (UBV). Estado de Santa Catarina, Secretaria de Estado da Saúde, Superintendência de Vigilância em Saúde. Florianópolis, 2016.

Instituto Oswaldo Cruz. Considerações técnicas sobre a aplicação aérea de inseticidas em área urbana. Nota Técnica nº 4/2016/IOC-FIOCRUZ/DIRETORIA. Rio de Janeiro, 2016.

Brasil. Ministério da Saúde. Dispõe sobre a adoção de medidas de vigilância em saúde quando verificada situação de iminente perigo à saúde pública pela presença do mosquito transmissor do vírus da dengue, do vírus chikungunya e do vírus da zika. Lei nº 13.301, de 27 de Junho de 2016.

World Health Organization (WHO). Report of the fifteenth whopes working group meeting. Review of: Olyset®Plus, Interceptor®LN, Malathion 440 EW, Vectobac® GR. World Health Organization, Geneva, Switzerland, 2012.

Barata, C., Solayan, A., Porte, C. Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic Toxicology. 66 (2) (2004) 125-139.

Saler, S., Saglan, N. Acute toxicity of Malathion on Daphnia magna Straus,1820. Journal of Biological Sciences. 5 (3) (2005) 297-299.

Damásio, J. et al. Biochemical mechanisms of resistance in Daphnia magna exposed to the insecticide fenitrothion. Chemosphere. 70 (1) (2007) 74-82.

Oga, S., Camargo, M. A., Batistuzzo, J. A. O. Fundamentos de toxicologia, Atheneu, São Paulo, 3rd ed., 2008.

Rebechi, D. Efeitos ecotoxicológicos em Chironomus sancticaroli Strixino & Strixino, 1981 (Diptera: Chironomidae) expostos ao Malathion. 2012. 85f Dissertação (Mestrado em Entomologia) – Universidade Federal do Paraná, Curitiba, 2012.

Teixeira, C. P. A. B., Jardim, W. F. Advanced Oxidative Processes: theoretical concepts. Thematic Notebook, v. 3, State University of Campinas (UNICAMP), Institute of Chemistry - IQ, Laboratory of Environmental Chemistry - LQA. Campinas, 2004 (Português).

Badawy, M. I., Ghaly, M. Y., Gad-Allah, T. A. Advanced oxidation processes for the removal or organophosphorus pesticides from waste water. Desalination. 194 (1-3) (2005) 166-175.

Loures, C. C. A. et al. Advanced oxidative degradation processes: Fundamentals and Aplications. International Review of Chemical Engineering. 5 (2) (2013) 102-120.

Zhang, Y, Pagilla, K. Treatment of malathion pesticide wastewater with nanofiltration and photo-Fenton oxidation. Desalination 263 (1-30) (2010) 36-44.

Chenna M. et al. Study and modeling of the organophosphorus compound degradation by photolysis of hydrogen peroxide in aqueous media by using experimental response surface design. Journal of Industrial and Engineering Chemistry 33 (2016) 307-315.

Clark, K. K. et al. Kinetic Studies of the AOP Radical-Based Oxidative and Reductive Destruction of Pesticides and Model Compounds in Water. Chemosphere DOI doi.org/10.1016/j.chemosphere.2017.12.190.

Brenner, L. Malathion Fact Sheet. Journal of Pesticide Reform. 12 (4) (1992) 29-37.

Konstantinou, I. K., Antonopoulou, M., Lambropoulou, D. A. Transformation products of emerging contaminants formed during advanced oxidation processes. In Transformation products of emerging contaminants in the environment: Analisys, processes, ocurrence, effects and risks, Lambropoulou, D. A, Nollet, L. M. L., ed., John Wiley & Sons: Chinchester, United Kingdom, 2014, Ch. 6.

Kralj, M.B., Černigoj, U., Franko, M., Trebše, P. Comparison of photocatalysis and photolysis of malathion, isomalathion, malaoxon, and commercial malathion - Products and toxicity studies. Water Research. 41 (19) (2007) 4504-4514.

Zagatto, P. A., Bertoletti, E. Ecotoxicologia aquática: princípios e aplicações, RiMa, São Carlos, Brasil, 2nd ed., 2008.

Garcia, J. C. et al. Evolutive follow-up of the photocatalytic degradation of real textile effluents in TiO2 and TiO2/H2O2 systems and their toxic effects on Lactuca sativa seedlings. Journal of the Brazilian Chemical Society. 20 (9) (2009) 1678-4790.

United States Environmental Protection Agency (USEPA). Protocols for short term toxicity screening of hazardous waste sites – 600/3-88/029, Washington, United States, 1989.

Sobrero, M. C.; Ronco, A. Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L. In Ensayos toxicológicos para la evaluación de substancias químicas em água y suelo - La experiencia en México, Romero, P. R., Cantú, A. M., ed., Secretaria de Medio Ambiente y Recursos Naturales, Ciudad de México, México, 2004, Ch .

Muturi, E. J. Larval rearing temperature influences the effect of malathion on Aedes aegypti life history traits and immune responses. Chemosphere 92 (9) (2013) 1111-1116.

World Health Organization (WHO). Instructions for Determining the Susceptibility or Resistance on Mosquito Larvae to Insecticides. World Health Organization, Geneva, Switzerland, 1981.

Dipil. Ficha técnica do produto: Malathion 500 CE Inseticida Líquido. Dipil Indústria Química.

Young, B. J. et al. Toxicity of the effluent from an anaerobic bioreactor treating cereal residues on Lactuca sativa. Ecotoxicology and Environmental Safety. 76 (2) (2012) 182-186.

Nogueira, R. F. P., Oliveira, M. C., Paterlini, W.C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate, Talanta, 66 (2005) 86.

U.S Environmental Protection Agency (USEPA). Reregistration Eligibility Decision (RED) for Malathion Revised. U.S, Office of Prevention, Pesticides and Toxic Substances. Washington, United States, 2009.

Toumi, H. et al. Investigation of differences in sensitivity between 3 strains of Daphnia magna (Crustacean: Cladocera) exposed to malathion (organophosphorus pesticide). Journal of Environmental Science and Health. 50 (1) (2014) 34-44.

Nagato, E. G., Simpson, A. J., Simpson, M. J. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A. Aquatic Toxicology. 170 (1) (2016) 175-186.

Brasil. Ministério da Saúde. Portaria nº 2914, de 12 de dezembro de 2011. “Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade”. 2011

U.S Environmental Protection Agency (USEPA). 2018 Edition of the Drinking Water Standards and Health Advisories. U.S Office of Water. Washington, United States, 2018.

Brasil. Ministério do Meio Ambiente, Conselho Nacional do Meio Ambiente. Resolução CONAMA no 357, de 17 de março de 2005. “Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências”. 2005.

Lofrano, G. et al. Advanced Oxidation Processes for Antibiotics Removal: A Review. Current Organic Chemistry. 21 (12) (2017) 1054-1067.

Santos, K. A. et al. Processos oxidativos avançados: uma revisão de fundamentos e aplicações no tratamento de águas residuais urbanas e efluentes industriais. Ambiente & Água-An Interdisciplinary Journal of Applied Science. 11 (2) (2016) - .

Pignatello, J. J., Oliveros, S. E., Mackay, A. Advanced oxidation processes of organic contaminant destruction based of the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology. 36 (1) (2006) 1-84.