Dark breather using symmetric Morse, solvent and external potentials for DNA breathing

Main Article Content

Hernan Oscar Cortez Gutierrez
Milton Milciades Cortez Gutierrez
Girady Iara Cortez Fuentes Rivera
Liv Jois Cortez Fuentes Rivera
Deolinda Fuentes Rivera Vallejo

Abstract

We analyze the dynamics and the quantum thermodynamics of DNA in Symmetric-Peyrard-Bishop-Dauxois model (S-PBD) with solvent and external potentials and describe the transient conformational fluctuations using dark breather and the ground state wave function of the associate Schrodinger differential equation.  We used the S-PBD, the Floquet theory, quantum thermodynamic and finite difference methods. We show that for lower coupling dark breather is present.  We estimate the fluctuations or breathing of DNA. For the S-PBD model we have the stability of dark breather for k<0.004 and mobile breathers with coupling k=0.004. The fluctuations of the dark breather in the S-PBD model is approximately zero with the quantum thermodynamics. The viscous and external potential effect is direct proportional to hydrogen bond stretching.

Metrics

Metrics Loading ...

Article Details

How to Cite
Gutierrez, H. O. C., Gutierrez, M. M. C., Fuentes Rivera, G. I. C., Fuentes Rivera, L. J. C., & Vallejo, D. F. R. (2018). Dark breather using symmetric Morse, solvent and external potentials for DNA breathing. Eclética Química, 43(4), 44–49. https://doi.org/10.26850/1678-4618eqj.v43.4.2018.p44-49
Section
Original articles

References

von Hippel, P., Johnson, N., Marcus, A., 50 years of DNA ‘Breathing’: Reflections on Old and New Approaches, Biopolymers 99 (12) (2013) 923-954. https://doi.org/10.1002/bip.22347.

Hidayat, W., Sulaiman, A., Viridi, S, Zen, F. P., The viscous and external forces effect on the thermal denaturation of Peyrard-Bishop, Physical Chemistry & Biophysics 5 (5) (2015) 1-5 (186). https://doi.org/10.4172/2161-0398.1000186.

Flach, S., Gorbach, A., Discrete breathers-Advance in theory and applications, Physics Reports 467 (1-3) (2008) 1-116. https://doi.org/10.1016/j.physrep.2008.05.002.

Mackay, R. S., Aubry, S., Proof of existence of breathers for time-reversible for Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994) 1623-1643. https://doi.org/10.1088/0951-7715/7/6/006.

Cuevas J., Localizacion y Transferencia de Energia en Redes Anarmónicas No Homogéneas, Ph. D. Thesis, Universidad de Sevilla, Sevilla, España (2003). http://grupo.us.es/gfnl/thesis.htm.

Aubry, S., Cretegny, T., Mobility and Reactivity of Discrete Breathers, Physica D 119 (1-2) (1998) 34-46. https://doi.org/10.1016/S0167-2789(98)00062-1.

Ambjomsson, T., Banik, S. K., Krichevsky, O., Metzler, R., Breathing dynamics in Heteropolymer DNA, Biophysics J. 92 (8) (2007) 2674-2684. https://doi.org/10.1529/biophysj.106.095935.

Cortez, H., Drigo Filho, E., Ruggiero, J. R., Breather stability in one dimensional Lattices with a symmetric Morse Potential, TEMA, Tend. Mat. Apl. Comput. 9 (2) (2008) 205-212. https://doi.org/10.5540/tema.2008.09.02.0205.

Cortez, H., Drigo Filho, E., Ruggiero., J. R., Cortez, M., Mobile breathers in a nonlinear model for DNA breathing, Eclética Química Journal 42 (2017) 71-75. https://doi.org/10.26850/1678-4618eqj.42.1.2017.p71-75.

Sulaiman, A., Zen, F. P., Alatas, H., Handoko, L. T., Dynamics of DNA breathing in the Peyrard-Bishop weth damping and external force, Physica D 241 (2012) 1640-1647. https://doi.org/10.1016/j.physd.2012.06.011.

Cortez, H., Tese de doutorado, Modelo Dinâmico e estatístico aplicado à transição de fase. UNESP.(2009) https://repositorio.unesp.br/bitstream/handle/11449/100461/cortezgutierrez_ho_dr_sjrp.pdf?sequence=1&isAllowed=y.

Cortez, H., Drigo Filho, E., Ruggiero, J. R., Gutierrez, M. C., Fuentes Rivera, L. C., Thermodynamics of DNA with “hump” Morse potential, Eclética Química Journal 41 (2016) 60-65. https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p60-65.

Bustamante, C. Smith, S.B., Liphardt,J., Smith, D., Single-molecule studies of DNA mechanics, Current Opinion in Structural Biology 10 (3) (2000) 279-285. https://doi.org/10.1016/S0959-440X(00)00085-3.