Incorporation of CdFe2O4SiO2 nanoparticles in SbPO4-ZnO-PbO glasses by melting quenching process

Main Article Content

Juliane Orives
Wesley R. Viali
Marina Magnani
Marcelo Nalin

Abstract

The development of glasses containing nanoparticles dispersed homogeneously with controlled size and optimum parameters for functionality is a challenge. Glasses in the ternary system 60SbPO4-30ZnO-10PbO containing CdFe2O4-SiO2 nanoparticles  were studied. The CdFe2O4 nanoparticles were synthesized by the coprecipitation method and the average size was 3.9 nm and then, they were protected by a silica layer. The nanoparticles were mixed with the glass precursors and transformed into glasses by melt-quenching method. Thermal and structural properties were evaluated by differential scanning calorimetry, Raman spectroscopy, scanning electronic microscopy and transmission electron microscopy. While the optical properties were studied by M-Lines spectroscopy and UV-VIS spectroscopy. The glass samples obtained were completely transparent, with amber color and showed no sign of crystallization according to the techniques used. Scanning and transmission electron microscopy confirm that the methodology used for the incorporation of nanoparticles was efficient. The nanoparticle protection methodology prior to incorporation into glasses may contribute towards the development of glasses containing nanoparticles useful for magneto-optics devices.

Metrics

Metrics Loading ...

Article Details

How to Cite
Orives, J., Viali, W. R., Magnani, M., & Nalin, M. (2018). Incorporation of CdFe2O4SiO2 nanoparticles in SbPO4-ZnO-PbO glasses by melting quenching process. Eclética Química, 43(2), 32–43. https://doi.org/10.26850/1678-4618eqj.v43.2.2018.p32-43
Section
Original articles

References

Manzan, R. S., Donoso, J. P., Magon, C. J., Silva, I. d’A. A., Rüsseld, C., Nalin, M. Optical and Structural Studies of Mn2+ Doped SbPO4-ZnO-PbO Glasses, J. Braz. Chem. Soc. 26 (12) (2015), 2607-2614. http://dx.doi.org/10.5935/0103-5053.20150289

Franco, D. F., Hssen Fares, H., Souza, A. E., Santagneli, S. H., Nalin, M., Glass formation and the structural study of the Sb2O3-SbPO4-WO3 system, Eclet. Quim. 42 (1) (2017) 51-59. http://dx.doi.org/10.26850/1678-4618eqj.v42.1.2017.p51-59

Falcão Filho, E. L., Bosco, C.A.C., Maciel, G. S., Araujo, C. B., Nalin, M., Messaddeq, Y., Ultrafast nonlinearity of antimony polyphosphate glasses, Appl. Phys. Lett. 83 (2003) 1292-1294. https://doi.org/10.1063/1.1601679

Nalin, M., Messaddeq, Y., Ribeiro, S. J. L., Poulain, M., Briois, V., Brunklaus, G., Rosenhahn, C., Mosel, B. D., Eckert, H., Structural organization and thermal properties of the Sb2O3–SbPO4 glass system, J. Mater. Chem. 14 (2004) 3398- 3405. https://doi.org/10.1039/B406075J

Moustafa, S.Y., Sahar, M.R., Ghoshal, S.K., Comprehensive thermal and structural characterization of antimony-phosphate glass, Results phys. 7 (2017) 1396-1411. https://doi.org/10.1016/j.rinp.2017.04.006

Miller, P. J., Cody, C. A., Infrared and Raman investigation of vitreous antimony trioxide, Spectrochim. Acta A-M. 38 (5) (1982) 555-559. https://doi.org/10.1016/0584-8539(82)80146-3

Nalin, M., Poirier, G., Messaddeq, Y., Ribeiro, S. J. L., Carvalho, E. J., Cescato, L., Characterization of the reversible photoinduced optical changes in Sb-based glasses, J. Non-Cryst. Sol. 352 (2006) 3535-3539. https://doi.org/10.1016/j.jnoncrysol.2006.03.087

Manzani, D., Montesso, M., Mathias, C. F., Krishanaiah, K. V., Ribeiro, S. J. L., Nalin, M., Visible up-conversion and near-infrared luminescence of Er3+/Yb3+ co-doped SbPO4 GeO2 glasses, Opt. Mater. 57 (2016) 71-78. https://doi.org/10.1016/j.optmat.2016.04.019

Ouannes, K., Lebbou, K., Walsh, B. M., Poulain, M., Alombert-Gotet, G., Guyot, Y., Antimony oxide based glasses, novel laser materials, Opt. Mater. 65 (2017) 8-14. https://doi.org/10.1016/j.optmat.2016.11.017

Rao, V. H., Prasad, P. S., Rao, P. V., Santos, L. F., Veeraiah, N., Influence of Sb2O3 on tellurite based glasses for photonic applications, J. Alloys Compd. 687 (2016) 898-905. https://doi.org/10.1016/j.jallcom.2016.06.256

Shasmal, N., Karmakar, B., Tuneable and Au-enhanced yellow emission in Dy3+/Au co-doped antimony oxide glass nanocomposites, J. Non-Crys. Solids. 463 (2017) 40-49. https://doi.org/10.1016/j.jnoncrysol.2017.02.019

Franco, D. F., Sant’Ana, A. C., Oliveira L. F. C., Silva, M. A. P., The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties, J. Mater. Chem. C. 3 (2015) 3803-3808. https://doi.org/10.1039/C5TC00102A

Prasad, P.N. Nanophotonics, Wiley, New Jersey, 2004.

Gonella, F., Mazzoldi, P. Handbook of nanostructured materials and nanotechnology, Academic Press, San Diego v. 4, 2000, ch2.

Sharma, S., Singh, S., Prajapat, C.L., Bhattacharya, S., Preparation and study of magnetic properties of silico phosphate glass and glass-ceramics having iron and zinc oxide, J. Mag. Mag. Mat. 321(22) (2009) 3821-3828. https://doi.org/10.1016/j.jmmm.2009.07.047

Bigot, J.-Y., Mircea., V., Beaurepaire, E., Coherent ultrafast magnetism induced by femtosecond laser pulses, Nature Phys. 5 (2009) 515-520. . https://doi.org/10.1038/nphys1285

Boeglin, C., Beaurepaire, E., Halté, V., López-Flores, V., Stamm, C., Pontius, N., Dürr , H. A., . Bigot, J.-Y. Distinguishing the ultrafast dynamics of spin and orbital moments in solids, Nature. 465 (2010) 458-461. https://doi.org/10.1038/nature09070

Nakashima, S., Sugioka, K., Tanaka, k., Midorikawa, k., Mukai, k., Optical and magneto-optical properties in Fe-doped glasses irradiated with femtosecond laser, Appl. Phys. B. 113 (3) (2013) 451- 456. https://doi.org/10.1007/s00340-013-5489-z

Kim, K.D., Kim, S.S., Choa, Y.H., Kim, H.T., Formation and surface modification ofFe3O4 nanoparticles by co-precipitation and sol-gel method, J. Ind. Eng. Chem.7 (2007) 1137-1141.

Widanarto, W., Sahar, M.R., Ghoshal, S.K., Arifin, R., Rohani, M.S., Effendi, M., Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide, Mat. Lett. 108 (2013) 289–292. https://doi.org/10.1016/j.matlet.2013.06.109

Anigrahawati, P., Sahar, M. R., Ghoshal, S. K., Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass, Mater. Chem. Phys. 155 (2015) 155-161. http://dx.doi.org/10.1016/j.matchemphys.2015.02.014

Widanarto, W., Sahar, M. R., Ghoshal, S. K., Arifin , R., Rohani, M.S., Hamzah, K., Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass, J. Mag. Mag. Mat. 326 (2013) 123-128. http://dx.doi.org/10.1016/j.jmmm.2012.08.042

Farag, H. K., Marzouk, M. A., Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses J. Mater. Sci: Mater. Electron. 28 (2017) 15480–15487. http://dx.doi.org/10.1007/s10854-017-7435-z

Chen, Q. Wan, L. Chen, Zhang, Q. M., Effect of Magnetite Nanoparticles Doped Glass with Enhanced Verdet Constant for Magnetic Optical Current Transducer Applications, Adv. Mater. Res. 270 (2011) 13-18. http://dx.doi.org/10.4028/www.scientific.net/AMR.271-273.13[25] Lou, X., Liu, S., Shi, D., Chu, M., Ethanol-sensing characteristics of CdFe2O4 sensor prepared by sol–gel method, Mater. Chem. Phys. 105 (2007) 67-70. https://doi.org/10.1016/j.matchemphys.2007.04.038

Bakuzis, A. F., Skeff, N. K., Gravina, P. P., Figueiredo, L. C., Morais, P. C., Magneto-optical properties of a highly transparent cadmium ferrite-based magnetic fluid, Appl. Phys. Lett. 84 (2004) 2355- 2357. https://doi.org/10.1063/1.1690497

Kaur, H., Singh, J., Randhawa, B. S., Essence of superparamagnetism in cadmium ferrite induced by various organic fuels via novel solution combustion method, Ceram. Int. 40 (2014), 12235-12243. https://doi.org/10.1016/j.ceramint.2014.04.067

Naseri, M. ‎Optical and magnetic properties of monophasic cadmium ferrite (CdFe2O4) nanostructure prepared by thermal treatment method, J. Magn. Magn. Mater. 392 (2015) 107-113. https://doi.org/10.1016/j.jmmm.2015.05.026

Plocek, J., Hutlová, A., Niznanský, A., D., Bursık, J., Rehspringer, J.-L. Micka, Z. Preparation of ZnFe2O4/SiO2 and CdFe2O4/SiO2nanocomposites by sol–gel method, J. Non-Cryst. Sol. 315 (2003) 70-76. https://doi.org/10.1016/S0022-3093(02)01595-8

Dippong , T., Cadar, O., Levei, E. A., Bibicu, I., Diamandescu, L., Leostean, C., Lazar, M., Borodi, G., Tudoran, L. B., Structure and magnetic properties of CoFe2O4/SiO2 nanocomposites obtained by sol-gel and post annealing pathways, Ceram. Int. (2017) 2113-2122. https://doi.org/10.1016/j.ceramint.2016.10.192

Silva, J. B., Characterization of Porous Nanocomposites Formed by Cobalt Ferrites

Dispersed in Sol-Gel Silica Matrix, ‎J. Sol-Gel Sci. Technol. 35 (2015) 115–122. https://doi.org/10.1007/s10971-005-1378-1

Nalin, M., Poulain, M., Poulain, Mi., Ribeiro, S. J. L., Messaddeq, Y.,Antimony oxide based glasses, J. Non-Cryst. Sol. 284 (2011) 110-116. https://doi.org/10.1016/S00223093(01)00388-X

Cullity, B. D., Stock, S. R., Elements of X Ray Diffraction, Prentice Hall, Upper Saddle River, New Jersey, 3rd ed., 2001.

Tauc, J. Amorphous and Liquid Semiconductor. Plenum Publishing Company Ltd; New York, 1974.

Miao, F.; Deng, Z.; LV, X., Gu, G., Wan, S., Fang, X., Zhang, Q., Yin, S., Fundamental properties of CdFe2O4 semiconductor thin film. Solid State Commun. 150 (2010) 2036–2039. https://doi.org/10.1016/j.ssc.2010.08.010

Shi, W.; Liu, X.; Zhang, Wang, Q., Zhang, L. Magnetic nano-sized cadmium ferrite as na efficient catalyst for the degradation of Congo red in the presence of microwave irradiation. RSC adv., 5 (2015) 5, 51027. https://doi.org/10.1039/C5RA07591B

Navarro, J. M. F., El Vidrio, CSIC Press, Madrid, Spain, 3rd ed., 2003.

Siqueira, F. R. Preparação de vidros e vitrocerâmicas contendo metais de transição. Dissertação (Mestrado em Química) – Instituto de Química, Universidade Federal de São Carlos, São Carlos. 2014.

Ganjoo, A., Gollovchak, R., Computer program PARAV for calculating optical constants of thin films and bulk materials: Case study of amorphous semiconductors, J. of Optoel. and adv. Mat., 10 (2008) 1328-1332.