Potentiometric and conductometric studies on the system acid-isopolytungstate and the formation of lanthanum tungstates
Main Article Content
Abstract
(≤ 0.01M) has been studied by means of electrometric techniques involving pH-potentiometric and
conductometric titrations. The well defined inflections and breaks in the titration curves provide
evidence for the existence of the polyanions, para-W 12 O 4110- and meta-W 12 O 396- corresponding to the
ratio of H + :WO 42- as 7:6 and 9:6 in the pH ranges 5.7-6.0 and 3.6-4.1, respectively. The interaction of
lanthanum nitrate with sodium tungstate solutions, at specific pH levels 8.0, 5.9 and 4.0 was also
studied by pH and conductometric titrations, in aqueous and alcoholic media, with each of the reagents
alternatively used as titrant. The electrometric experiments provide definite evidence of the formation
of normal-La 2 O 3 .3WO 3 , para-5La 2 O 3 .36WO 3 and meta-La 2 O 3 .12WO 3 tungstates in the vicinity of pH
6.3, 5.0 and 4.2, respectively. Analytical investigations on the precipitates formed confirm the results
of the electrometric study.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
M. T. Pope, B. W. Dale, Q. Revs. 22 (1968) 527.
D. L. Kepert, in: A. F. Trotman-Dickenson, (Ex. Ed.),
Comprehensive Inorganic Chemistry, Vol. 4, Pergamon Press,
Oxford, 1973, pp. (a) 641, (b) 642, (c) 646.
H. R. Craig, S. Y. Tynee, Inorg. Chem. 4 (1965) 997.
M., Grayson, (Ex. Ed.), Kirk-Othmer Encyclopedia of
Chemical Technology. Vol.23, Wiley-Interscience, New York,
rd edn., 1993, p.431.
D. L. Kepert, in: F. A. Cotton, (Ed.), Progress in Inorganic
Chemistry, Vol. 4, Interscience Publishers, New York, 1962,
p. 199.
F. A. Cotton, G. Wilkinson, Advanced Inorganic
Chemistry, Interscience Publishers, New York, 3rd edn.,
, p.952.
S. Prasad, Can. J. Chem. 59 (1981) 563.
S. Prasad, S. B. Gonçalves, J. B. Brito, Catal. Today, 57
(2000) 343.
S. Prasad, T. L. M. Guimarães, J. Braz. Chem. Soc. 9
(1998) 253.
A. I. Vogel, A Textbook of Quantitative Inorganic Analysis,
Longmans, London, 3 rd . Edn.,1968, p. (a) 567, (b) 541.
K. F. Jahr, J. Fuchs, Angew. Chem. Intern. Ed. 5 (1966) 689.
J. Aveston, Inorg. Chem. 3 (1964) 981.
O. Glemser, W. Holtje, Z. Naturforsch. 20b (1965) 398.
O. Glemser, W. Holznagel, W. Holtje, E. Schwarzmann,
Z. Naturforsch. 20b (1965) 725.
M. B. MacInnis, T. K. Kim, J. Chem. Tech. Biotechnol.
(1979) 225.
M. del Arco, D. Carriazo, S. Gutierrez, C. Martin, V.
Rives, Inorg. Chem. 43 (2004) 375.
G. M. Rozantsev, O. I. Sazonova, Russ. J. Coord. Chem.
(2005) 552.
J. Meier, G. Schwarzenbach, J. Inorg. Nucl. Chem. 8
(1958) 302.
E. L. Simons, Inorg. Chem. 3 (1964) 1079.
E. V. Timofeeva, G. A. Tsirlina, O. A. Petrii, Russ. J.
Electrochem. 39 (2003) 716.
A. Standen, (Ex. Ed.), Kirk-Othmer Encyclopedia of
Chemical Technology, Vol.13, IntersciencePublishers, New
York, 2 nd Edn., 1967, p.782.