Biopolímeros: aplicações farmacêutica e biomédica
Main Article Content
Abstract
The study and development of polymers for pharmaceutical and biomedical use has been increasing due to their peculiar properties that contribute for the improvement of the life quality, such as the polymers used in regenerative medicine and in drug release systems. The development of new polymer based materials and its composites depends on several steps, such as the synthesis approach, the extraction, the composition, the influence of their properties on the specific applications, and others. This review describes the use of conventional and new polymers with potential application in pharmaceutical and biomedical fields, highliting the properties that allow them to be useful for such pourposes.
Metrics
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
The corresponding author transfers the copyright of the submitted manuscript and all its versions to Eclet. Quim., after having the consent of all authors, which ceases if the manuscript is rejected or withdrawn during the review process.
When a published manuscript in EQJ is also published in other journal, it will be immediately withdrawn from EQ and the authors informed of the Editor decision.
Self-archive to institutional, thematic repositories or personal webpage is permitted just after publication. The articles published by Eclet. Quim. are licensed under the Creative Commons Attribution 4.0 International License.
References
S. M. Willerth, S. E. Sakiyama-Elbert, Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. Melton, D. Stem Book. Harvard Stem Cell Institute, Massachusetts. Massachusetts General Hospital, 2013. Disponível em http://www.stembook.org/about.html
S. N. Lakshmi, T. L. Cato, Biodegradable polymers as biomaterials, Progr. Polym. Sci., 2007, 32, 762-798.
B. D Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, Elsevier Inc.: Oxford, 2014.
M. W. J. Mosesson, Fibrinogen and fibrin structure and functions, J. Thromb. Haemost., 2005, 3, 1894-1904.
Z. Yang, I. Mochalkin, R. F. Doolittle, A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides, Proc Natl Acad Sci U S A, 2000, 97, 14156-14161.
A. H. Henschen-Edman, Fibrinogen non-inherited heterogeneity and its relationship to function in health and disease, Ann. N. Y. Acad Sci., 2001, 936, 580-593.
R. A. Burton, G. Tsurupa, L. Medved, N. Tjandra, Identification of an ordered compact structure within the recombinant bovine fibrinogen alphaC-domain fragment by NMR, Biochemistry, 2006, 45, 2257-2266.
G. Tsurupa, R. R. Hantgan, R. A. Burton, I. Pechik, N. Tjandra, L. Medved, Structure, stability, and interaction of the fibrin(ogen) alphaC-domains, Biochemistry, 2009, 48, 12191-12201.
T. Riedel, J. Suttnar, E. Brynda, M. Houska, L. Medved, J. E. Dyr, Fibrinopeptides A and B release in the process of surface fibrin formation, Blood, 2011, 117, 1700-1706.
K. F. Standeven, A. M. Carter, P. J. Grant, J. W. Weisel, I. Chernysh, L. Masova, S. T.,Lord, Functional analysis of fibrin {gamma}-chain cross-linking by activated factor XIII: determination of a cross-linking pattern that maximizes clot stiffness, Blood, 2007, 110, 902-907.
P.A. Janmey, J. P. Winer, J. W. Weisel, Fibrin gels and their clinical and bioengineering applications, J. R. Soc. Interface, 2009, 6, 1-10.
W. D. Spotnitz, Fibrin Sealant: The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective, ISRN Surgery, 2014, 1-28.
S. Bergel, Uber die Wirkung des Fibrins, Dtsch. Med. Wochenschr., 1909, 35, 663-665.
J. Z. Young, P. B. Medawar, Fibrin suture of peripheral nerves: measurement of the rate of regeneration, The Lancet., 1940, 236, 126-128.
D. M. Albala, J. H. Lawson, Recent clinical and investigational applications of fibrin sealant in selected surgical specialties, J. Am. Coll. Surg., 2006, 202, 685-697.
E. M. D. Mooney, C. M. D. Loh, L. L. Q. M. D. Pu, The use of fibrin glue in plastic surgery, Plast. Reconstr. Surg., 2009, 124, 989-992.
M. Yeboah, FDA approves first biodegradable sealant patch for cardiovascular surgery, Tech. Rep. 2010, FDA News Release.
S. Patel, E. C. Rodriguez-Merchan, F. S. Haddad, The use of fibrin glue in surgery of the knee, J. Bone, Joint Surg., 2010, 92, 1325-1331.
H. Wang, L. Shan, H. Zeng, M. Sum, Y. Hua, Z. Cai, Is fibrin sealant effective and safe in total knee arthroplasty? A meta-analysis of randomized trials, J. Orthop. Surg. Res., 2014, 9, 1-8.
M. Gogulanathan, P. Elavenil, A. Gnanam, V. B. Krishnakumar Raja, Evaluation of fibrin sealant as a wound closure agent in mandibular third molar surgery—a prospective, randomized controlled clinical trial, Int. J. Oral Maxillof. Surg., 2015, 44, 871-875.
R. M. Brown, Cellulose structure and biosynthesis: What is in store for the 21st century?, J. Polym. Sci., 2004, 42, 487-495.
S. Tanskul, K. Amornthatree, N. Jaturonlak, A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions, Carbohydr. Polym., 2013, 92, 421-428.
I. A. N. Donini, D. T. B de Salvi, F. K. Fukumoto, W. R. Lustri, H. S. Barud, R. Marchetto, Y. Messaddeq, S. J. L. Ribeiro, Biossíntese e recentes avanços na produção de celulose bacteriana, Eclet. Quim., 2010, 35, 165-178.
Y. H. P. Zhang, Reviving the carbohydrate economy via multi-product lignocellulose biorefineries, J. Ind. Microbiol. Biot., 2015, 35, 367-375.
L. Fu, J. Zhang, G. Yang, Present status and applications of bacterial cellulose-based materials for skin tissue repair, Carbohydr. Polym., 2013, 92, 1432-1442.
S. C. Lazarini, R. Aquino, A. C. Amaral, F. A. A. Corbi, P. P. Corbi, H. S. Barud, W. R. Lustri, Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone, Cellulose, 2016, 23, 737-748.
M. Ul-Islam, J. H. Ha, T. Khan, J. K. Park, Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose, Carbohydr. Polym., 2013, 92, 360-366.
D. Klemm, B. Heublein, H. P. Fink, A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angew Chem. Int. Edit., 2005, 44, 3358-3393.
M. Scherner, S. Reutter, D. Klemm, A. Sterner-Kock, M. Guschlbauer, T. Richter, G. Langebartels, N. Madershahian, T. Wahlers, J. Wippermann, In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept?, J. Surg. Res., 2014, 189, 340-347.
A. Pietak, S. Korte, E. Tan, A. Downard, M.P. Staiger, Atomic force microscopy characterization of the surface wettability of natural fibres, Appl. Surf. Sci., 2007, 253, 3627-3635.
M. Ul-Islam, T. Khan, J. K. Park, Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification, Carbohydr. Polym., 2012, 88, 596-603.
N. Shah, M. Ul-Islam, W. A. Khattak, J. K. Park, Overview of bacterial cellulose composites: A multipurpose advanced material, Carbohydr. Polym., 2013, 98, 1585-1598.
R. Mayer, P. Ross, H. Weinhouse, D. Amikam, G. Volman, P. Ohana, R. D. Calhoon, H. C. Wong, A. W. Emerick, M. P. Benziman, Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants, Natl. Acad. Sci. USA, 1991, 88, 5472-5476.
M.Poletto, H. L. O. Junior, eds.; W. R Lustri, H. G. de O. Barud, H. S. Barud, M. F. S. Peres, J. Gutierrez, A Tercjak,. O. B. de Oliveira, S. J. L. Ribeiro, Microbial Cellulose Biosynthesis Mechanisms and Medical Applications, InTechn (2015) cap. 6.
M. Martson, J. Viljanto, T. Hurne, P. Laippala, P. Saukko, Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat, Biomaterials, 1989, 20, 1989-1995.
V. A. Oliveira, C. R. Rambo, L. M. Porto, Production and in vitro degradation of bacterial cellulose tubular structures, Polímeros, 2013, 23, 559-564.
H. Bäckdahl, G. Helenius, A.Bodin, U. Nannmark, B.R. Johansson, B. Risberg, P. Gatenholm, Mechanical properties of bacterial cellulose and interactions with smooth muscle cells, Biomaterials, 2006, 27, 2141-2149.
N. Chiaoprakobkij, N. Sanchavanakit, K. Subbalekha, P. Pavasant, M. Phisalaphong, Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts, Carbohydr. Polym., 2011, 85, 548-553.
W. C. Lin, C. C. Lien, H. J. Yeh, C. M. Yu, S. H. Hsu, Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications, Carbohydr. Polym., 2013, 94, 603-611.
D. O. S. Recouvreux, C. R. Rambo, F. V. Berti, C. A. Carminatti, R. V. Antônio, L. M. Porto, Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration, Mater. Sci. Eng. C., 2011, 31, 151-157.
H. S. Barud, Preparo e caracterização de novos compósitos de celulose bacteriana. Dissertação de mestrado. Universidade Estadual Paulista “Júlio de Mesquita Filho”,UNESP, Araraquara, 2006.
J. M. Dugan, J. E. Gough, S. J. Eichhorn, Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering, Nanomedicine UK., 2013, 8, 287-298.
M. M. Abeer, M. C. I. M. Amin, C. J. Martin, A review of bacterial cellulose-based drug delivery systems: their biochemistry, current approaches and future prospects, J. Pharm. Pharmacol., 2014, 66, 1047-1061.
Y. L. Lam, S. Muniyandy, H. Kamaruddin, A. Mansor, P. Janarthanan, Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release, Radiation Phys. Chem., 2015, 106, 213-222.
D. Mohnen, Pectin structure and biosynthesis, Curr. Opin. Plant Biol., 2008, 11, 266-277.
W. G. T. Willats, J. P. Knox, J. D. Mikkelsen, Pectin: new insights into an old polymer are starting to gel, Trends Food Sci. Tech., 2006, 17, 97-104.
C. Rolin, R. L. Whistler, J. N. BeMiller, eds, Pectin, In Industrial gums: polysaccharides and their derivates, Academic Press: London, 3rd edn., 1993.
G. A. Morris, M. C. Ralet, E. Bonnin, J. F. Thibault, S. E. Harding, Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin, Carbohydr. Polym., 2010, 82, 1161-1167.
Z. K. Mukhiddinov, D. K. Khalikov, F. T. Abdusamiev, C. C. Avloev, Isolation and structural characterization of a pectin homo and ramnogalacturonan, Talanta, 2000, 53, 171-176.
T. Katav, L. Liu, T. Traitel, R. Goldbart, M. Wolfson, J. Kost, Modified pectin-based carrier for gene delivery: Cellular barriers in gene delivery course, J. Control. Release, 2008, 130, 183-191.
A. Nakamura, H. Furuta, H. Maeda, T. Takao, Y. Nagamatsu, Structural Studies by Stepwise Enzymatic Degradation of the Main Backbone of Soybean Soluble Polysaccharides Consisting of Galacturonan and Rhamnogalacturonan, Biosci Biotech Bioch., 2002, 66, 1301-1313.
M. A. Rodriguez-Carvajal, C. H. Penhoat, K. Mazeau, T. Doco, S. Pérez, The three-dimensional structure of the mega-oligosaccharide rhamnogalacturonan II monomer: a combined molecular modeling and NMR investigation, Carbohydr. Res., 2003, 338, 651-671.
G. B. Seymour, J. P. Knox, Pectins and their manipulation, Blackwell: Oxford, 2002.
F. Munarin, M. C. Tanzi, P. Petrini, Advances in biomedical applications of pectin gels, Int. J. Biol. Macromol., 2012, 51, 681-689.
M. A. O’Neill, D. Warrenfeltz, K. Kates, P. Pellerin, T. Doco, A. G. Darvill, A. Peter, Rhamnogalacturonan-II, a Pectic Polysaccharide in the Walls of Growing Plant Cell, Forms a Dimer That Is Covalently Cross-linked by a Borate Ester in vitro conditions for the formation and hydrolysis of the dimer, J. Biol. Chem., 1996, 271, 22923-22930.
J. Zandleven, G. Beldman, M. Bosveld, H. A. Schols, A. G. J. Voragen, Enzymatic degradation studies of xylogalacturonans from apple and potato, using xylogalacturonan hydrolase, Carbohydr. Polym., 2006, 65, 495-503.
L. Liu, M. L. Fishman, J. Kost, K. B. Hicks, Pectin-based systems for colon-specific drug delivery via oral route, Biomaterials. 24 (2003) 3333-3343.
A. M. F. Lima, V. Soldi, R. Borsali, Dynamic light scattering and viscosimetry of aqueous solutions of pectin, sodium alginate and their mixtures: effects of added salt, concentration, counterions, temperature and chelating agente, J. Braz.Chem. Soc., 2009, 20, 1705-1714.
E. N. Fissore, A. M. Rojas, L. N. Gerschenson, P. A. Williams, Butternut and beetroot pectins: Characterization and functional properties, Food Hydrocolloid., 2013, 31, 172-182.
G. A. Morris, M. S. Kök, S. E. Harding, G. G. Adams, Polysaccharide drug delivery systems based on pectin and chitosan, Biotechnol. Genet. Eng. Rev., 2010, 27, 257-284.
J. P. Souto-Maior, A. V. Reis, L. N. Pedreiro, O. A. Cavalcanti, Phosphated pectin application in the development of films for drug delivery systems: Evaluation of permeability properties and swelling, Ver. Bras. Cienc. Farm., 2008, 44, 203-213.
N. Thirawong, J. Nunthanid, S. Puttipipatkhachorn, P. Sriamornsak, Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer, Eur. J. Pharm Biopharm., 2007, 67, 132-140.
J. W. Lee, J. H. Park, J. R. Robinson, Bioadhesive-based dosage forms: the next generation, J. Pharm. Sci., 2000, 89, 850-866.
A. B. Meneguin, B. S. F. Cury, R. C. Evangelista, Films from resistant starch-pectin dispersions intended for colonic drug delivery, Carbohydr. Polym., 2014, 99, 140-149.
V. R. Sinha, R. Kumria, Polysaccharides in colon-specific drug delivery, Int. J. Pharm., 2001, 224, 19-38.
G. A. Soares, A. D. D. Castro, B. S. F. Cury, R. C. Evangelista, Blends of cross-linked high amylose starch/pectin loaded with diclofenac, Carbohydr. Polym., 2013, 91, 135-142.
L. Liu, Y. J. Won, P. H. Cooke, D. R. Coffin, M. L. Fishman, K. B. Hicks, P. X. Ma, Pectin/poly(lactide-co-glycolide) composite matrices for biomedical applications, Biomaterials, 2004, 25, 3201-3210.
R. K. Dutta, S. Sahu, Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy, Results Pharm. Sci., 2012, 2, 38-45.
M. Morra, C. Cassinelli, G. Cascardo, Effects on Interfacial Properties and Cell Adhesion of Surface Modification by Pectic Hairy Regions, Biomacromolecules, 2004, 5, 2094-2104.
N. Ninan, M. Muthiah, I. Park, A. Elain, S. Thomas, Y. Grohens, Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering, Carbohydr. Polym., 2013, 98, 877-885.
C. Chen, M. Sheu, T. Chen, Y. Wang, W. Hou, D. Liu, T. Chung, Y. Liang, Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways, Biochem. Pharmacol., 2006, 72, 1001-1009.
H. Salman, M. Bergman, M. Djaldetti, J. Orlin, H. Bessler, Citrus pectin affects cytokine production by human peripheral blood mononuclear cells, Biomed. Pharmacother., 2008, 62, 579-582.
M. Rinaudo, Physicochemical properties of pectins in solution and gel states, Progress in Biotechnology, 1996, 14, 21-33.
J. Zhu, S. Zhang, B. Zhang, D. Qiao, H. Pu, S. Liu, L. Li, Structural Features and Thermal Property of Propionylated Starches With Different Amylose/Amylopectin Ratio, Int. J. Biol. Macromolec., 2017, 97, 123-130.
G. F. Perotti, J. Tronto, M. A. Bizeto, C.M.S. Izumi, M. L. A. Temperini, A. B. Lugão, D. F. Parra, V.R.L. Constantino, Biopolymer-Clay Nanocomposites: Cassava Starch and Synthetic Clay Cast Films, J. Braz. Chem. Soc., 2014, 25, 320-330.
A. C. Dona, G. Pages, R. G. Gilbert, P. W. Kuchel, Digestion of starch: In vivo and in vitro kinetic models used to characterise oligosaccharide or glucose release, Carbohydr. Polym., 2010, 80, 599-617.
S. Ball, H. P. Guan, M. James, A. Myers, P. Keeling, G. Mouille, From glycogen to amylopectin: a model for the biogenesis of the plant starch granule, Cell., 1996, 86, 349-352.
D. Li, B. Liu, F. Yang, X. Wang, H. Shen, D. Wu, Preparation of uniform starch microcapsules by premix membrane emulsion for controlled release of avermectin, Carbohydr. Polym., 2016, 136, 341-349.
V. Rana, P. Rai, A.K. Tiwary, R.S. Singh, J.F. Kennedy, C.J. Knill, Modified gums: Approaches and applications in drug delivery, Carbohydr. Polym., 201 1, 83, 1031-1047.
W. Błaszczaka, A. Bucinski, A. R. Górecki, In vitro release of theophylline from starch-based matrices prepared via high hydrostatic pressure treatment and autoclaving, Carbohydr.Polym., 2014, 117, 25-33.
A. K. Htoon, S. Uthayakumaran, U. Piyasiri, A. M. Appelqvist, A. López-Rubio, E. P. Gilbert, R. Mulder, The effect of acid dextrinisation on enzyme-resistant starch content in extruded maize starch, J. Food Chem., 2010, 120, 140-149.
S. G. Haralampu, Resistant starch-a review of the physical properties and biological impact of RS3, Carbohydr. Polym., 2000, 41, 285-292.
A. Dimantov, E. Kesselman, E. Shimoni, Surface characterization and dissolution properties of high amylose corn starch–pectin coatings, Food Hydrocolloid., 2004, 18, 29-37.
R. C. Eerlingen, M. Crombez, J. A. Delcour, Enzyme-Resistant Starch. I. Quantitative and Qualitative Influence of Incubation Time and Temperature of Autoclaved Starch on Resistant Starch Formation, Cereal Chem., 1993, 70, 339-344.
D. Sievert, Y. Pomeranz, Enzyme-Resistant Starch. I. Characterization and Evaluation by Enzymatic, Thermoanalytical, and Microscopic Methods, Cereal Chem., 1989, 66, 342-347.
H. Liu, L. Yu, L. Chen, L. Li, Retrogradation of corn starch after thermal treatment at different temperatures, Carbohydr. Polym., 2007, 69, 756-762.
M. L. Fishman, D. R. Coffin, J. J. Unruh, T. Ly, Pectin/starch/glycerol films: blends or composites, J. Macromol. Sci.-Pure Appl.Chem., 1996, 33, 639-654.
A. C. D. Recife. Amido retrogradado como excipiente de comprimidos para liberação controlada de fármacos: obtenção e caracterização. Dissertação de Mestrado. Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, Araraquara, 2013.
H. S. Yoon, J. H. Lee, S. T. Lim, Utilization of retrograded waxy maize starch gels as tablet matrix for controlled release of theophylline, Carbohydr. Polym., 2009, 76, 449-453.
V. M. O. Cardoso. Síntese e caracterização de hidrogéis de amido retrogradado e goma gelana utilizados como matriz em sistemas de liberação cólon específica de fármacos. Dissertação de Mestrado. Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, Araraquara, 2014.
Y. C. Shi, C. C. Maningat, Resistant Starch – Sources, Applications and Health Benefits, John Wiley & Sons, New York, 2013.
Z. Zhou, F. Wang, X. Ren, Y. Wang, C. Blanchard, Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats, Int. J. Biol. Macromol., 2015, 75, 316-321.
A. Amini, L. Khalili, A.K. Keshtiban, A. Homayouni, Resistant Starch as a Bioactive Compound in Colorectal Cancer Prevention, R. Watson, V.R. Preedy (eds.), Academic Press, London, 2016.
S. P. Campana-Filho, D. Britto, E. Curti, F. R. Abreu, M. B. Cardoso, M. V. Battisti, P. C. Sim, R. C. Goy, R. Signini, R. L. Lavall, Extraction, structures and properties of ɑ- AND β-chitin, Quim. Nova, 2007, 30, 644-650.
C. Moura, P. Muszinski, C. Schmidt, J. Almeida, L. Pinto, Quitina e quitosana produzidas a partir de resíduos de camarão e siri: avaliação do processo em escala piloto, Vetor, 2006, 16, 37-45.
R. Spin-Neto, C. Pavone, R. M. Freitas, R. A. C. Marcantonio, E. Marcantonio-Júnior, Biomateriais à base de quitosana com aplicação médica e odontológica: revisão de literatura, Rev. Odontol. UNESP, 2008, 30, 155-161.
M. C. M. Laranjeira, V. T. Fávere, Quitosana: biopolímero funcional com potencial industrial biomédico, Quim. Nova, 2009, 32, 672-678.
C. Damian, L. H. Beirão, A. Francisco, M. L. P. Espirito-Santo, E. Teixeira, Quitosana: um amino polissacarídio com características funcionais, Alim. Nutr., 2005, 16, 195-205.
M. Rinaudo, Chitin and chitosan: Properties and applications, Prog. Polym. Sci., 2006, 31, 603-632.
K. B Dias, D. P. Silda, L. A. Ferreira, R. R. Fidelis, J. L Costa, A. L. L. Silva, G. N. Scheidt, Chitinandchitosan: Characteristics, uses and production current perspectives, J. Biotech Biodivers., 2013, 4, 184-191.
H. S. R. C. Silva, K. S. C. R. Santos, E. I. Ferreira, Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços, Quim. Nova, 2006, 29, 776-785.
I. Giavasis, L. M. Harvey, B. Mcneil, Gellan gum, Crit. Rev. Biotechnol., 2000, 20, 177-211.
S. M. Hasheminya, J. Dehghannya, An overview on production and applications of gellan biopolymer, Int. J. Agric. Crop Sci., 2013, 5, 3016-3019.
E. R. Morris, K. Nishinari, M. Rinaudo, Gelation of gellan – A review, Food Hydrocolloid., 2012, 28, 373-411.
T. Osmalek, A. Froelich, S. Tasarek, Application of gellan gum in pharmacy and medicine, Int. J. Pharm., 2014, 466, 328-340.
V. D. Prajapati, G. K. Jani, B. Zala, T. A. Khutliwala, An insight into the emerging exopolysaccharide gellan gum as a novel polymer, Carbohydr. Polym., 2013, 93, 670-678.
G. R. Sanderson, Gellan gum, Food gels, 1990, 201-232.
K. Manjanna, T. P. Kumar, B. Shivakumar, Natural polysaccharide hydrogels as novel excipients for modified drug delivery systems: a review, Int. J. Chem. Tech. Res., 2010, 2, 509-525.
D. M. Kirchmajer, B. Steinhoff, H. Warren, R. Clark, Enhanced gelation properties of purified gellan gum, Carbohydr. Polym., 2014, 388, 125-129.
C. S. F. Picone, R. L. Cunha, Chitosan–gellan electrostatic complexes: Influence of preparation conditions and surfactant presence, Carbohydr. Polym., 2013, 94, 695-703.
R. Mao, J. Tang, B. G. Swanson, Texture properties of high and low acyl mixed gellan gels, Carbohydr. Polym., 2000, 41, 331-338.
S. A. Agnihotri, S. S. Jawalkar, T. M. Aminabhavi, Controlled release of cephalexin through gellan gum beads: effect of formulation parameters on entrapment efficiency, size, and drug release, Eur. J. Pharm. Biopharm., 2006, 63, 249-261.
V. M. Oliveira Cardoso, B. S. F Cury, R. C. Evangelista, M. P. D. Gremião, Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications, Mech. Behav. Biomed., 2017, 65, 317-333.
M. Ahuja, S. Singh, A. Kumar, A., Evaluation of Carboxymethyl Gellan Gum as a Mucoadhesive Polymer, Int. J. Biol. Macromol., 2013, 53, 114-121.
S. Maiti, S. Ranjit, R. Mondol, S. Ray, B. Sa, Al3+ ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide, Carbohydr. Polym., 2011, 85, 164-172.
A. B. Meneguin. Obtenção e caracterização de filmes de misturas de amido Resistente e pectina como estratégia para liberação cólon Específica de fármacos. Dissertação de Mestrado. Universidade Estadual Paulista “Júlio de Mesquita Filho”, UNESP, Araraquara, 2012.
M. Narkar, P. Sher, A. Pawar, Stomach-specific controlled release gellan beads of acid-soluble drug prepared by ionotropic gelation method, AAPS PharmSci., 2010, 11, 267-277.
R. V. Kulkarni, B. S. Mangond, S. Mutalik, B. Sa, Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem–resin complex for controlled release application, Carbohydr. Polym., 2011, 83, 1001-1007.
F. G. Prezotti, B. S. F. Cury, R. C. Evangelista, Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs, Carbohydr. Polym., 2014, 113, 286-295.
H. Moritaka, H. Fukuba, K. Kumeno, N. Nakahama, K. Nishinari, Effect of monovalent and divalent cations on the rheological properties of gellan gels, Food Hydrocolloid., 1991, 4, 495-507.
E. Ogawa, R. Takahashi, H. Yajima, K. Nishinari, Effects of molar mass on the coil to helix transition of sodium-type gellan gums in aqueous solutions, Food Hydrocolloid., 2005, 20, 378-385.
D. Shungu, M. Valiant, V. Tutlane, E. Weinberg, B. Weissberger, L. Koupal, H. Gadebusch, E. Stapley, GELRITE as an Agar Substitute in Bacteriological Media, Appl. Environ. Microbiol., 1983, 46, 840-845.
P. Rajinikanth, B. Mishra, Preparation and in vitro characterization of gellan based floating beads of acetohydroxamic acid for eradication of H. pylori, Acta Pharm., 2007, 57, 413-427.
P. Vashisth, K. Nikhil, P. Roy, P. A. Pruthi, R. P. Singh, V. Pruthi, A novel gellan-PVA nanofibrous scaffold for skin tissue regeneration: Fabrication and characterization, Carbohydr. Polym., 2016, 136, 851-859.
J. T. Oliveira, L. Martins, R. Picciochi, P. B. Malafaya, R. A. Sousa, N. M. Neves, J. F. Mano, R. L. J. Reis, Gellan gum: A new biomaterial for cartilage tissue engineering applications, Biomed. Mater. Res., Part A, 2010, 93, 852-863.
R. R. Sehgal, S. I. Roohani-Esfahani, H. Zreiqat, R. Banerjee, Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration, J. Tissue Eng. Regener. Med., 2017 1195-1211.
J. F. Mano, G. A. Silva, H. S. Azevedo, P. B. Malafaya, R. A. Sousa, S. S. Silva, L. F. Boesel, J. M. Oliveira, T. C. Santos, A. P. Marques, N. M. Neves, R. L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends, J. R. Soc. Interface, 2007, 4, 999-1030.
R. F. Oliveira, M. Sousdaleff, M. V. S. Lima, H. O. S. Lima, Produção fermentativa de ácido lático a partir do melaço da cana-de-açúcar por Lactobacillus casei: VII BMCFB, Braz. J. Food Technol., 2009, 7, 34-40.
J. Lunt, Large-scale Production, Properties and Commercial Applications of Polylactic Acid Polymers, Polym. Degrad. Stab., 1998, 59, 145-152.
A. J. R. Lasprilla, G. A. R. Martinez, B. H. Lunelli, A. L. Jardini, F. R. Maciel, Poly-lactic acid synthesis for application in biomedical devices - A review, Biotechnol. Adv., 2012, 30, 321-328.
N. Narayanan, P. K. Roychoudhury, A. Srivastava, L (+) lactic acid fermentation and its product polymerization, Biotechnol., 2004, 7, 167-178.
N. K. Madhavan, N. R. Nair, R. P John, An overview of the recent developments in polylactide (PLA) research, Bioresour. Technol., 2010, 10, 8493-8501.
M. Vert, J. Feijen, A. Albertson, G. Scott, E. Chiellini, Em Biodegradable polymers and plastics, Royal Society of Chemistry Cambridge, 1992, 302.
R. H. Auras, Poly(lactic-acid): Synthesis, Structures, Properties, Processing, and Applications, Lim, L. T., Selke, S. E. M.; Tsuji, eds.,Wiley & Sons, Inc., 2010
H. Tsuji, Y. Ikada, Crystallization from the melt of poly(lactide)s with different optical purities and their blends, Macromol Chem Phys., 1996, 197, 3483-3499.
O. Avine, A. Khoddami, Overview of Poly(lactic acid) (PLA) Fibre, Fibre Chem., 2010, 41, 391-401.
M. S. Lopes, A. L. Jardini, R. Maciel Filho, Synthesis and Characterizations of Poly (Lactic Acid) by Ring-Opening Polymerization for Biomedical Applications, Chem.Eng. Trans., 2014, 38, 331-336.
D. P. Queiroz, Diagrama de fases, propriedades térmicas e morfológicas de blendas de Poli (ácido láctico) e Poli (metacrilato de metila). Tese de Doutorado, Universidade Estadual de Campinas, Unicamp, Campinas, 2000.
B. Gupta, N. Revagade, J. Hilborn, Poly(lactic acid) fiber: An overview, Prog. Polym. Sci., 2007, 34, 455-482.
Y. Cheng, S. Deng, P. Chen, R. Ruan, Polylactic acid (PLA) synthesis and modifications: a review, Front. Chem. China, 2009, 4, 259-264.
S. R. Rathi, E. B. Coughlin, S. L. Hsu, C. S. Golub, G. H. Ling, M. J. Tzivanis, Maintaining Structural Stability of Poly(lactic acid): Effects of Multifunctional Epoxy based Reactive Oligomers, Polymers, 2014, 6, 1232-1250.
S. J. Sharma, Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. Royal Society of Chemistry. London, 2011.
S. H. Barbanti, C. A. C. Zavaglia, Polímeros bioreabsorvíveis na engenharia de tecidos, Polímeros, 2005, 15, 13-21.
R. P. Pawara, S. U. Tekalea, S. U. Shisodiaa, J. T. Totrea, A. J. Dombb, Biomedical Applications of Poly(Lactic Acid), Recent Pat. Regener. Med., 2014, 4, 40-51.
F. J. Van-Natta, J. W. Hill, W, H. Carruthers, Studies of Polymerization and Ring Formation. XXIII.1 ε-Caprolactone and its Polymers, J. Am. Chem. Soc., 1934, 56, 455-457.
G. Natta, Stereospecific polymerizations by means of coordinated anionic catalysis: Introductory Lecture, J. Inorg. Nucl. Chem., 1958, 8, 589-611.
W. Amass, A. Amass, B. Tighe, You have full text access to this contentA review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies, Polym. Int., 1998, 47, 89-144.
M. Chasin, R. Langer, Biodegradable polymers as drug delivery systems, Marcel Dekker, New York, 1990, chap. 3.
A. G. A. Coombes, S. C. Rizzi, M. Williamson, J. E. Barralet, S. Downes, W. A. Wallace, Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery, Biomaterials, 2004, 25, 315-325.
M. A. Woodruff, D. W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century, Prog. Polym Sci., 2010, 35, 1217-1256.
M. Vert, Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts, J. Mater. Sci: Mater.Med., 2009, 20, 437-446.
S. H. Barbanti, C. A. C. Zavaglia, E. A. R. Duek, Degradação acelerada de suportes de poli(e-caprolactona) e poli(D,L-ácido láctico-co-ácido glicólico) em meio alcalino, Polímeros, 2006, 16, 141-148.
R. L. Kronenthal, Polymer Science and Technology: Polymers in Medicine and Surgery. Springer, New York, 1975.
J. C. Middleton, A. J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 2000, 21, 2335-2346.
S. Shalaby, A. Hoffman, B. D. Ratner, T. A. Horbett, Polymers as Biomaterials prolactone, Springer, 1984, chap. 13.
V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, A. Trehan, Poly-epsilon-caprolactone microspheres and nanospheres: an overview, Int. J. Pharm., 2004, 278, 1-23.
P. Gunatillake, R. Mayadunne, R. Adhikari, Recents developments in biodegradable synthetic polymers, Biotechnology Annual Review, 2006, 12, 301-347.
A. R. Pohlmann, F. N. Fonseca, K. Paese, C. B. Detoni, K. Coradini, R. CR. Beck, S. S. Guterres, Poly(ϵ-caprolactone) microcapsules and nanocapsules in drug delivery, Expert. Opin. Drug Deliv., 2013, 10, 623-638.
J-C. Jeong, J. Lee, K. Cho, Effects of crystalline microstructure on drug release behavior of poly(epsilon-caprolactone) microspheres, J. Control. Release, 2003, 92, 249-258.
V. R. Sinha, A. J. Trehan, Biodegradable microspheres for protein delivery, Control. Release, 2003, 90, 261-280.
J. S. Chawla, M. M. Amiji, Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, Int. J. Pharm., 2002, 249, 127-138.
F. Wu, J. Wei, C. Liu, B. O’Neill, Y. Ngothai, Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering, Compos. Part B-Eng., 2012, 43, 2192-2197.
J. P. Temple, D. L. Hutton, B. P. Hung, P. Y. Huri, C. A. Cook, R. Kondragunta, X. Jia, W. L. Grayson, Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds, J. Biomed. Mater. Res-A, 2014, 102, 4317-4325.
D. Milovac, T. C. Gamboa-Martínez, M. Ivankovic, G. G. Ferrer, H. Ivankovic, PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: in vitro cell culture studies, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 42, 264-272.
X. Shao, J. C. Goh, D. W. Hutmacher, E. H. Lee, G. Zigang, Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model, Tissue Eng., 2006, 12, 1539-1551.
J. Xue, B. Feng, R. Zheng, Y. Lu, G. Zhou, W. Liu, Y. Cao, Y. Zhang, W. J. Zhang, Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone, Biomaterials, 2013, 34, 2624-2631.
C.-H. Chen, M.-Y. Lee, V. B.-H. Shyu, Y.-C. Chen, C.-T. Chen, J.-P. Chen, Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 40, 389-397.
S. H. Lee, B. S.Kim, S. H. Kim, S. W. Choi, S. I. Jeong, I. K. Kwon, S. W. Kang, J. Nikolovski, D. J. Mooney, Y. K. Han, Y. H. Kim, Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering, Biomed. Mater. Res. A., 2003, 66, 29-37.
J. E. Arenas, H. Ahn, T. K. Hill, J. M. Young, H. Chang, J. Yoo, S. J. Lee, Dual seeded polycaprolactone (PCL)/collagen electrospun vascular scaffold for engineering small diameter blood vessel and clinical translation, Am. Coll. Surgeons, 2012, 215, S139-S140.
H. M. Powell, S. T. Boyce, Engineered Human Skin Fabricated Using Electrospun Collagen–PCL Blends: Morphogenesis and Mechanical Properties, Tissue Eng. Part A, 2009, 15, 2177-2187.
S. Gautam, C.-F.Chou, A. K. Dinda, P. D. Potdar, N. C. Mishra, Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 34, 402-409.
N. T. Daia, M. R. Williamson, N. Khammo, E. F. Adams, A. G. A. Coombes, Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin, Biomaterials, 2004, 25, 4263-4271.
A. J. Reid, A. C. Luca, A. Faroni, S. Downes, M. Sun, G. Terenghi, P. J. Kingham, Long term peripheral nerve regeneration using a novel PCL nerve conduit, Neurosci Lett., 2004, 544, 125-130.
E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend, Biomaterials, 2007, 28, 3012-3025.
A. Kurella, N. B. Dahotre, Review paper: surface modification for bioimplants: the role of laser surface engineering, J. Biomater. App., 2005, 20, 5-50.