Simple, fast and inexpensive method for determination of ranitidine hydrochloride based on conductometric measurements

Main Article Content

Eduardo Henrique Bindewald
João Carlos Rosa-Sobrinho
Márcio Fernando Bergamini
Luiz Humberto Marcolino-Júnior

Abstract

This work aims the development and optimization of an alternative method for ranitidine hydrochloride (RAN-HCl) determination. The proposed method was based on conductometric titration of RAN by precipitation of AgCl solid using a solution of AgNO3 as titrant. It was investigated the possibility of performing the titrations on hydroalcoholic and deionized water medium. A limit of detection of 1.0 mmol L-1 and 0.5 mmol L-1 were achieved for RAN titration in deionized water and in a 75:25 hydroalcoholic mixture, respectively. Such behavior is attributed to the dielectric constant of hydroalcoholic medium, which is lower than aqueous solution, making AgCl more insoluble and improving the resolution of the conductivity curve around the end point. Therefore, it is concluded that the conductometric titration method to determine RAN using AgNO3 as titrant proved to be feasible at low drug concentrations. The statistical calculations for obtained results suggested good precision for the conductometric method. According to t-test, there were no significant differences between found values at a 95% confidence level. Moreover, obtained results showed an excellent performance of the proposed method on quality control of RAN-HCl in generic formulations without any sample pretreatment.

Metrics

Metrics Loading ...

Article Details

How to Cite
Bindewald, E. H., Rosa-Sobrinho, J. C., Bergamini, M. F., & Marcolino-Júnior, L. H. (2018). Simple, fast and inexpensive method for determination of ranitidine hydrochloride based on conductometric measurements. Eclética Química, 43(4), 37–43. https://doi.org/10.26850/1678-4618eqj.v43.4.2018.p37-43
Section
Original articles

References

Saul, C., Teixeira, C. R., Pereira-Lima, J. C., & Torresini, R. J. S. (o), Redução da prevalência de úlcera duodenal: Um estudo brasileiro (análise retrospectiva na última década: 1996-2005). Arquivos de Gastroenterologia, 44(4)(2007), 320–324. https://doi.org/10.1590/S0004-28032007000400008.

Jorge, S. M. A., Pontinha, A. D. R., & Oliveira-Brett, A. M. (j), Electrochemical Redox Behavior of Omeprazole Using a Glassy Carbon Electrode. Electroanalysis, 22(6)(2010), 625–631. https://doi.org/10.1002/elan.200900377.

Huber, R., Hartmann, M., Bliesath, H., Lühmann, R., Steinijans, V. W., Zech, K. (i), Pharmacokinetics of pantoprazole in man. International Journal of Clinical Pharmacology and Therapeutics, 34(1 Suppl)(1996), S7-16. Retrieved from http://europepmc.org/abstract/med/8793599.

De Armas, H. N., Peeters, O. M., Blaton, N., Van Gyseghem, E., Martens, J., Van Haele, G., Van Den Mooter, G. (g), Solid state characterization and crystal structure from x-ray powder diffraction of two polymorphic forms of ranitidine base. Journal of Pharmaceutical Sciences, 98(1)(2009), 146–158. https://doi.org/10.1002/jps.21395.

Madsen, J. L., Graff, J. (k), Effects of the H2-receptor antagonist ranitidine on gastric motor function after a liquid meal in healthy humans. Scandinavian Journal of Clinical and Laboratory Investigation, 68(8)(2008), 681–684. https://doi.org/10.1080/00365510802047685.

Arayne, M. S., Sultana, N., Zuberi, M. H., Siddiqui, F. A. (b), Simultaneous determination of metformin, cimetidine, famotidine, and ranitidine in human serum and dosage formulations using HPLC with UV detection. Journal of Chromatographic Science, 48(9)(2010), 721–725. https://doi.org/10.1093/chromsci/48.9.721.

Tatar Ulu, S., Tuncel, M. (p), A sensitive and rapid determination of ranitidine in human plasma by HPLC with fluorescence detection and its application for a pharmacokinetic study. Journal of Chromatographic Science, 50(4)(2012), 301–306. https://doi.org/10.1093/chromsci/bms003.

Cholerton, T. J., Hunt, J. H., Klinkert, G., Martin-Smith, M. (e), Spectroscopic Studies on Ranitidine - its Structure and the Influence of Temperature and pH. Journal of the Chemical Society, Perkin Transactions 2, 4(11)(1984), 1761–1766. https://doi.org/10.1039/P29840001761.

Elgailani, I. E. H., Mohammed A. A., Spectrophotometric Determination of Some Antiulcerative Drugs in Pharmaceutical Dosages. Journal of Analytical Chemistry 73(7)(2018): 679-684. https://doi.org/10.1134/S1061934818070079.

de Araújo, W. R., Paixão, T. R. L. C. (f), Amperometric detection of ranitidine using glassy carbon modified with ruthenium oxide hexacyanoferrate adapted in a flow injection system. Electroanalysis, 23(11)(2011), 2549–2554. https://doi.org/10.1002/elan.201100102.

Xi, X., & Ming, L. (s), Electrochemical determination of ranitidine hydrochloride in pharmaceutical formulations and biological fluids at graphene modified electrode. Asian Journal of Chemistry, 25(10)(2013), 5315–5318. https://doi.org/10.14233/ajchem.2013.14172.

Pınar, P. Talay, Y. Yardım, Z. Şentürk, Electrochemical oxidation of ranitidine at poly (dopamine) modified carbon paste electrode: Its voltammetric determination in pharmaceutical and biological samples based on the enhancement effect of anionic surfactant. Sensors and Actuators B: Chemical, 273 (2018), 1463-1473. https://doi.org/10.1016/j.snb.2018.07.068.

Moldovan, Z., Aboul-Enein, H. Y. (l), Spectrophotometric method for ranitidine determination in drugs using Rhodamine B. Journal of the Chilean Chemical Society, 57(4)(2012), 1422–1427. https://doi.org/10.4067/S0717-97072012000400018.

British Pharmacopoeia Commission, Great Britain. Medicines Commission, and General Medical Council (Great Britain). British Pharmacopoeia, 2000. Vol II. Ranitidine Hydrochhoride (209): 5168-5173.

Farmacopéia Brasileira, Vol. II, 5th ed., Agência Nacional de Vigilância Sanitária, Brasília, Brazil 2010, p. 225.

Weber, C., Heuser, M., Mertens, G., & Stanjek, H. (r), Determination of clay mineral aspect ratios from conductometric titrations. Clay Minerals, 49(1)(2014), 17–26. https://doi.org/10.1180/claymin.2014.049.1.02.

Allen, L. V. (a). Remington: An Introduction to Pharmacy. Pharmaceutical Press. Retrieved from http://books.google.ca/books?id=J_6H4HfqdJkC.

Caetano, F. R., Gevaerd, A., Bergamini, M. F., & Marcolino-Junior, L. H. (d). A Fast and Simple Conductometric Method for Verapamil Hydrochloride Determination in Pharmaceutical Formulations. Current Pharmaceutical Analysis, 7(4)(2011), 275–279. https://doi.org/10.2174/157341211797458041.

de Noronha, B. V., Papi, M. A. P., Bergamini, M. F., Marcolino-Junior, L. H. (q), A Simple and Precise Determination of Diltiazem Hydrochloride by Simultaneous Conductometric and Potentiometric Detection. Current Pharmaceutical Analysis, 10(3)(2014), 203–207. https://doi.org/10.2174/1573412910666140403000201.

Sartori, E. R., Suarez, W. T., Fatibello-Filho, O. (n), Determinação condutométrica de cloridrato de metformina em formulações farmacêuticas empregando nitrato de prata como titulante. Quimica Nova, 32(7)(2009), 1947–1950. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000700043&nrm=iso.

Diamandis, E. P., Christopoulos, T. K. (h), Potentiometric titration of pharmaceutical compounds in formulations with sodium tetraphenylborate. Analytica Chimica Acta, 152(C)(1983), 281–284. https://doi.org/10.1016/S0003-2670(00)84919-3.