Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data

Main Article Content

Ricardo Vivas-Reyes
Andersson Arias

Abstract

Quantum Chemical calculations for group 14 elements of Periodic Table (C, Si, Ge, Sn, Pb) and their functional groups have been carried out using Density Functional Theory (DFT) based reactivity descriptors such as group electronegativities, hardness and softness. DFT calculations were performed for a large series of tetracoordinated Sn compounds of the CH3SnRR’X type, where X is a halogen and R and R’ are alkyl, halogenated alkyl, alkoxy, or alkyl thio groups. The results were interpreted in terms of calculated electronegativity and hardness of the SnRR’X groups, applying a methodology previously developed by Geerlings and coworkers (J. Phys. Chem. 1993, 97, 1826). These calculations allowed to see the regularities concerning the influence of the nature of organic groups RR’ and inorganic group X on electronegativities and hardness of the SnRR’X groups; in this case, it was found a very good correlation between the electronegativity of the fragment and experimental 119Sn chemical shifts, a property that sensitively reflects the change in the valence electronic structure of molecules.

Metrics

Metrics Loading ...

Article Details

How to Cite
Vivas-Reyes, R., & Arias, A. (2008). Evaluation of group electronegativities and hardness (softness) of group 14 elements and containing functional groups through density functional theory and correlation with NMR spectra data. Eclética Química, 33(3), 69–76. https://doi.org/10.26850/1678-4618eqj.v33.3.2008.p69-76
Section
Original articles

References

F.De Proft, W.Langenaeker , P.Geerlings, J.Phys.Chem. 97 (1993) 1826.

P.Geerlings, F. De Proft, W. Langenaeker Chem Rev. 103,

, (2003).

a. For a series of papers covering various aspects of electronegativity see: Structure and Bonding, Vol.66, Sen, K.D.; JØrgensen, C.K., Editors, Springer Verlag, Berlin, 1987; b. P. Gerrlings, F. De Proft. Int. J. Mol. Sci. 3, 276, (2002).

J. Mullay in Electronegativity,K.D..Sen and C.K Jorgenson Eds, Springer Velag,Berlin Heidelberg, 1987.

P. R.Wells,Progr. Phys.Org.Chem, 6, 111, (1968).

N. Inamoto, S. Masuda, Tetrahedron Lett, 3287 (1977).

R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc.,83,

(1961).

R. G. Parr,R. A. Donnelly, M. Levy, W. E. Palke, J. Chem.

Phys. 68, 380, (1978).

R. G.Parr and W.Yang, Density Functional Theory of

Atoms and Molecules, Oxford University Press, New York,1989.

P. Geerlings, F.De Proft and W.Langenaeker, in Density

Functional Methods and Material Science, M.Sprinborg Eds, John Willey,1997,p 19

R. G. Pearson, J.Am.Chem.Soc., 85,3533(1963).

R. G. Parr and R. G. Pearson, J.Am.Chem.Soc., 105,7512

(1983).

B. Wrackmeyer. Annual Reports NMR Spectroscopy.16

(1985) 73.

B. Wrackmeyer. Annual Reports NMR Spectroscopy.38

(1999) 204.

a. R. Vivas-Reyes, F. De Proft, M. Biesemans, R. Willen,

P. Geerling, J. Phys. Chem. A 106, 2753, (2002) b. P.

Geerlings, R. Vivas-Reyes, F. De Proft, M. Biesemans, R.

Wiley. Metal-Ligands Interactions Molecular, Nano-Micro

and macro systems in Complex Enviroments. Nato Science

Series. 461, 2002.

A. Rodríguez-Fortea, P. Alemany, T. Ziegler. J. Phys.

Chem A. 103, 8288, (1999).

T. Helgager, M. Jaszunski, K. Ruud. Chem. Rev. 99, 293

(1999).

D. N. kravtsov, A. S. Peregudov, A. I. Krylova, and

Yu.Yu. Gorelikova., Russ. Chem. Bull., 46 (1997) 1167.

D. N. Kravtsov, A. S.Peregugudov and E. M.Rokhlina, J.

Organomet. Chem.,128(1977) C27.

D. N. Kravtsov, A. S. Peregudov, O. V. Shcherbakova and

Yu. A. Borisov, Russ. Chem. Bull., 44 (1995) 1841.

D. N. kravtsov, A.S.Peregudov, V. M. Pachevskaya,

L.S.Golovchenko., J. Organomet. Chem.,536 (1997) 385.

A. S. Peregudov, E. M. Rokhlina, D. N. kravtsov., J.

Organomet. Chem.,471(1994) C1.

R. S.Mulliken., J. Chem.Phys. 2 (1934) 782.

R. T. Sanderson, Chemical Bonds and Bond Energy,

Academic Press, New York 1976.

W. Yang and R. G. Parr.,Proc.Natl. Acad. Sci.USA.,82

(1985) 6723.

G. Schaftenaar and J. H. Noordock. J. Compt. Aided Mol

Desig. 14 (2000) 123.

a) Becke, A. D. J. Chem. Phys.1993, 98, 5648. b) Lee, C.

Yang. W. Parr. R. G. Phys. Rev. B. 1998, 37, 785 c) Stephens,

P.J.; Devlin, F. J.; Chabalowski, C.F.; Frisch, M.J. J. Phys.

Chem. 1994, 98, 11623.

Perdew, J. P, Wang, Y. Hys. Rev. B. 45, 13244, (1992).

Hehre,W. J.;Radom, L.;Schleyer, P.v.R.,J. A. Pople Ab

Initio Molecular Orbital Theory; Wiley: New York, 1986.

M. J. Frisch, G. W.Trucks, H. B. Sclhegel, P.M. W. Gill,

B. G. Johnson, J. A. Montgomery, K. Raghavachari, M. A. Al-

Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J.

Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R.Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. PStewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 94, C.3Gaussian, Inc., Pittsburgh PA, 1995.

A. L .Allred, J. Inorg.Nucl.Chem., 17 (1961) 215.

R. G. Pearson, Inorg.Chem 27 (1988) 734.