Anacardic acid derivatives from Brazilian propolis and their antibacterial activity

Main Article Content

Maria do Socorro Sousa da Silva
Sidney Gonçalo de Lima
Evaldo Hipólito de Oliveira
José Arimateia Dantas Lopes
Mariana Helena Chaves
Francisco de Assis Machado Reis
Antônia Maria das Graças Lopes Citó

Abstract

Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by 1H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), monoene anacardic acid (3), α-amirine (4), β-amirine (5), cycloartenol (6), 24-methylene-cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is
described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp.

Metrics

Metrics Loading ...

Article Details

How to Cite
da Silva, M. do S. S., de Lima, S. G., de Oliveira, E. H., Lopes, J. A. D., Chaves, M. H., Reis, F. de A. M., & Citó, A. M. das G. L. (2008). Anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Eclética Química, 33(3), 53–58. https://doi.org/10.26850/1678-4618eqj.v33.3.2008.p53-58
Section
Original articles

References

E. L. Ghisalbert, Bee World. 60 (1979) 59.

C. Garcia-Viguera, W. Greenaway, F. R. Watley, Z.

Naturforsch., Tubigen. 47c (1992) 634.

T. Usia, A. H. Banskota, Y. Tezuka, K. Midorikawa, K.

Matsushige, S. Kadota, J. Nat. Prod. 65 (2002) 673.

M. C. Marcucci, Apidologie. 26 (1995) 83.

G. A. Burdock, Food Chem. Toxicol. 36 (1998) 347.

A. H. Banskota, T. Nagaoka, L. Y. Sumioka, Y. Tezuka, S.

Awale, K. Midorikawa, K. Matsushige, S. J. Kadota, Ethnopharmacology. 80 (2002) 67.

V. S. Bankova, A Diulgerov., S. S. S. Popov, , L. Evstatieva, L. Kuleva, O. Pureb, Z Zamjasan, Apidologie, 23 (1992) 79.

V. Bankova, S. L. Castro, M. C. Marcucci, Apidologie, 31

(2000) 3.

A. S. Pereira, E. A. Nascimento, F. R. Aquino Neto, Z.

Naturforsch., 57c (2002) 721.

M. S. S. Silva, A. M. G. L. Citó, M. H. Chaves, J. A. D.

Lopes, Quím. Nova, 28 (2005) 801.

S. G. De Lima “Síntese e Identificação de Biomarcadores

em Óleos da Bacia de Campos e Bacia Potiguar: Identificação

de 3-alquil-esteranos”. Tese de Doutorado. Unicamp –

Instituto de Química, Campinas-SP – Brasil, 2005, 350p.

C. Wang. The role of lipids in disease resistance and fruit

ripening tomato. Ph.D. Thesis. Rutgers University, New

Brunswick, N.J., 1998.

G. W. FRANCIS, K. VELAND, J. Chromatogr., 219 (1981) 379–384.

Lizhi Zhu. Investigating The Biosynthesis Of Polyacetylenes: Synthesis of Deuterated Linoleic Acids &

Mechanism Studies of DMDS Addition to 1,4-Enynes. Ph.D.

Thesis. Miami University-The Graduate School, Usa. Oxford,

Ohio, 2003, 104p.

P. R. Murray, W. L. Drew, G. S. Kobayasai, J. R. Thompson, “Microbiologia Médica,”. Guanabara Koogan,

Rio de Janeiro, 1990.

N. F. Roque, R. S. G. Olea, Quim. Nova, 13 (1990) 278.

S. B. Mahato, A. P. Kundu, Phytochemistry, 37(1994)

F. W. Wehrli, T. Nishida, “The Use of Carbon-13 Nuclear

Magnetic Resonance Spectroscopy in Natural Product

Chemistry,” in Zechmeister, L. et al. Progress in the

Chemistry of Organic Natural Products. Wi Springer-Verlag,

New York, 1979. p.93.

L. Radics, M. C. Kajtarperedy, S. Corsano, L. Standoli,

Tetrahedron. Lett., 48 (1975) 4287.

P. H. Gedam, P. S. Sampathkumaran, M. A. Sivasamban,

Indian J. Chem., 10 (1972) 388.

E. Pretsch, T. Clerc, J. Seibl, W. Simon, “Tables of spectral data for structure determination of organic compounds,” 2nd ed, Springer-Verlag, New York, 1989.

N. M. Carballeira, F. Shalabi, C. Cruz, Tetrahedron Lett.

, 35, 5575.

W. W. Christie, Lipid Technol., 9, (1997) 17.

J. H. P. Tyman, N. Jacobs, J. Chromatogr., 54 (1971) 83.

R. Christov, B. Trusheva, M. Papova, V. Bankova, M.

Bertrand, Nat. Prod. Res., 19 (2005) 673.

I. Kubo, S. Komatsu, M. J. Ochi, Agric. Food Chem., 34

(1986) 970.

H. Itokawa, N. Totsuka, K. Nakahara, K. Takeya, J. P.

Lepoittevin, Y. Asakawa, Chem. Pharm. Bull., 35 (1987) 3016.

H. Itokawa, N. Totsuka, K. Nakahara, M. Maezuru, K.

Takeya, M. Kondo, M. Inamatsu, H. Morita, Chem. Pharm.

Bull., 37 (1989) 1619.

M. Himejima, I. Kubo, J. Agric. Food Chem., 39 (1991) 418.

I. Kubo, H. Muroi, M. Himejima, Y. Yamagiwa, H. Mera,

K. Tokushima, S. Ohta, T. Kamikawa, J. Agric. Food Chem.,

(1993) 1016.

I. Kubo, M. Ochi, P. C. Vieira, S. Komatsu, J. Agric. Food Chem., 41 (1993) 1012.

H. Muroi, I. Kubo, J. Agric. Food Chem., 41 (1993) 1780.

R. Amorati, G. F. Pe dulli, L. Valgimgli, , O. A. Attanasi,

P. Filippone, C. Fiorucci, R. Saladino, J. Chem. Soc., Perkin

Trans., 2 (2001)2142.

N. Masuoka, I. Kubo, Biochimi. Biophysi. Acta, 1688

(2004) 245.

C. P. Siegers, Phytomedicine, 6 (1999) 281.

J. Westendorf, J. Regan, Pharmazie, 55 (2000) 864.

H. Hecker, R. Johannisson, E. Koch, C. P. Siegers,

Toxicology, 177 (2002) 167.

M. T. S. Trevisan, B. Pfundstein, R. Haubner, G. Wurtele,

B. Spiegelhalder, H. Bartsch, R.W. Owen, Food Chem. Toxicol., 44 (2006) 188.