Thermodynamics of DNA with “hump” Morse potential

Main Article Content

Hernán Cortez Gutiérrez
Elso Drigo Filho
José Roberto Ruggiero
Milton Cortez Gutierrez
Liv Cortez Fuentes Rivera

Abstract

The thermal denaturation of DNA, i.e. the separation of the two strands is a phenomenon caused by the amplitude of the vibrations of the bases, therefore it is necessary to know how such separation is generated in order to implement alternative model of the melting behavior as a function of nucleotide sequence and therapies to combat the cancer. We propose to use the extended nonlinear Peyrard-Bishop(PB) model of DNA to include an anharmonic potential representing the aromatic stacking interaction between n- and (n-1)-th consecutive base pairs to treat the problem. We use Finite-difference methods for determine the mean value of the displacement for the “hump Morse” potential of the Peyrard-Bishop model of DNA. We show how the extended “pseudo-Schrödinger” combined with finite difference method can be used to obtain the mean value displacements for the thermal denaturation of DNA with “hump” Morse potential.

 

Metrics

Metrics Loading ...

Article Details

How to Cite
Gutiérrez, H. C., Filho, E. D., Ruggiero, J. R., Gutierrez, M. C., & Rivera, L. C. F. (2016). Thermodynamics of DNA with “hump” Morse potential. Eclética Química, 41(1), 60–65. https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p60-65
Section
Original articles

References

N. Theodorakopoulos, Phase transitions in one dimension: Are they all driven by domain walls?, Physica D, 2006, 216, 185-190.

L. Angelani, Relationship between phase transition and topological, Phys .Rev. E., 2005, 72, 1-9.

M. Peyrard, A.R. Bishop, Statistical Mechanics of a nonlinear model for DNA denaturation, Phys. Rev. Letters, 1989, 62, 2755-2758.

T. Dauxois, N. Theodorakopoulos, M. Peyrard, Thermodynamic Instabilities in OnDimension:

Correlations, Scaling and Solitons, Journal of Statistical Physical, 2002, 107, 869-891.

J. Cuevas, Moving breathers in DNA model with competing short and longe-range dispersive interactions, Physica D, 2002, 163, 106-126.

A. Alvarez, J. F. R. Archilla, F. R. Romero, Dark breathers in Klein-Gordon Lattices. Band Analysis of their stability properties, New J. Phys., 2002, 4, 1-72.

M. Peyrard, Nonlinear statistical physics of DNA¨, Nonlinearity, 2004, 17, 1-33.

J. de Luca, E. Drigo Filho, A. Ponno, J. R. Ruggiero, Energy localization in the Peyrard-Bishop model, Physical Review E, 2004, 70, 026213-1 to 026213-9.

M. Peyrard, The pathway to energy localization in nonlinear lattices, Physica D, 1998, 119, 184-199.

J. Cuevas, Moving discrete breather in a Klein-Gordon chain with an impurity, J. Phys. A, 2002, 35, 10519-10530.

M. Hisakado, Breather trapping mechanism in piecewise homogeneous DNA, Physics Letters A, 1997, 227, 87-93.

A. Alvare, J. Cuevas, J. F. R. Archilla, Discrete moving breather collisions in a Kelin-Gordon chain oscillators, Physics Letters A, 2008, 372, 1256-1264.

F. C. Hoppensteadt, Analysis and Simulation of Chaotic Systems, Spring-Verlag, New York, 2000.

S. Aubry, Breathers in lattices: existence , linear stability, Physica D, 1997, 103, 201-250.

K. Forinash, M. Peyrard, B. Malomed, Interaction of discrete breathers with impurity modes, Phys. Rev. E, 1994, 49, 3400-3411.

R. S. Mackay, S. Aubry , Proof of existence of breathers for time-reversible for oscillators, Nonlinearity, 1994, 7, 1623-1643.

J. L. Marin, S. Aubry, Breathers in nonlinear lattices : numerical calculation from the anticontinuous limit, Nonlinearity, 1996, 9, 1501-1528.

H. Cortez, Modelo dinâmico e estatístico aplicado à transição de fase, Ph. D. Thesis, Universidade Estadual Paulista, São José do Rio Preto, Sao Paulo, Brasil, 2009.

S. Flach, C.R. Willis, Discrete breathers, Physics Reports, 1998, 295, 181-264.

S. Aubry, T. Cretegny, Mobility and Reactivity of Discrete Breathers, Physica D, 1998, 119, 34-46.

Y. Zhang, Theory of DNA melting based on the Peyrard-Bishop, Physical Review E, 1997, 56, 7100-7115.

J. Cuevas, Effect of the introduction of impurities on the stability of multibreathers at low coupling, Nonlinearity, 2005, 18, 769-790.

J. Cuevas, F. Palmero, J. F. R. Archilla, F. R. Romero, Moving discrete breather in a Klein-Gordon chain, J. Phys. A, 2002, 35, 10519-10530.

O. Bang, Generation of high-energy localized vibrational modes in nonlinear Klein-Gordon, Physical Review E, 1996, 53, 4143-4152.

J. Cuevas, Moving breathers in a bent DNA model, Physics Letters A, 2002, 299, 221-225.

J. L. Marin, J. C. Eibeck, F. M. Russell, Localized moving in a 2D lattice, Phys. Lett., 1998, A248, 225-229.

J. L. Marin, 2d breather, Nonlinear Science at the Dawn of the 21st Centure, Springer, Berlin, 2000, pp.293-306.

M. Peyrard, Modelling DNA at the mesoscale: a challenge for nonlinear science, Nonlinearity, 2008, 21, 91-100.

H. Cortez, E. Drigo, J. Ruggiero, Breather Stability in One Dimensional Lattices with a Symmetric Morse Potential, TEMA Tend. Mat. Apl. Comput., 2008, 9, 205-212.

R. Silva, E. Drigo, J. Ruggiero, A model coupling vibrational and rotational motion for the DNA molecule, J. Biol. Physics, 2008, 34, 511-519.

M. Zoli, Path integral method for DNA denaturation, Physical Review E, 2009, 79, 021122-1 to 021122-5.

P. Augusto, E. Drigo, J. Ruggiero, Statistical Model to DNA melting, Eclet. Quim., 2001, 26, 77-85.