Mobile breathers in a Nonlinear model for DNA breathing
PDF
EPUB

How to Cite

Gutierrez, H. C., Filho, E. D., Ruggiero, J. R., & Gutierrez, M. C. (2017). Mobile breathers in a Nonlinear model for DNA breathing. Eclética Química, 42(1), 71–75. https://doi.org/10.26850/1678-4618eqj.v42.1.2017.p71-75

Abstract

Objectives. Analyze the DNA dynamics in Peyrard-Bishop-Dauxois model (PBD) with different control parameters using its energy center of the mobile “breather”. Materials and methods. We used the Peyrard-Bishop-Dauxois mathematical model and the MATLAB software for studying the DNA dynamic using Morse potential, Symmetric Morse and the “hump” potential for simulating the interactions which arise the pile up. Results. It has been observed that the analytical and computational methods allow to detect the influence of the potentials of the PBD model in the behavior of the energy center in the presence of a couple of base A(adenine) or T(thymine) using the control of parameter α=-0.30 and velocity of mobile breather: v0=0.1. In the case of Morse potential, the center of energy respect to the mobile breather undergoes a change in its trajectory and produce a DNA breathing. Conclusions. Analytical and computational approaches can be used for obtaining differences respect to the DNA dynamics using different control parameters: velocity of BM and inhomogeneity. The potential “hump” may decrease the reflective effect with the indicated parameters to the effect on the energy center to the mobile breather.

https://doi.org/10.26850/1678-4618eqj.v42.1.2017.p71-75
PDF
EPUB

References

Micklos. D., DNA Science. Laboratory Press. 2003.

James, G., Continuation of discrete breathers from infinity in a nonlinear model for DNA breathing. Applicable Analysis, 2009.

Peyrard, M., Bishop, A. R., Statistical Mechanics of a nonlinear model for DNA, Physica Review Letters 62 (1989) 2755-2758. https://doi.org/10.1103/PhysRevLett.62.2755

Cuevas, J., Localización y Transferencia de Energia en Redes Anarmónicas No Homogéneas, Ph. D. Thesis, Universidad de Sevilla, Sevilla, España, 2003.

Mackay, R. S., Aubry, S., Proof of existence of breathers for time-reversible for Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994) 1623-1643.

Jefferson, J., Structural dynamics in DNA damage signaling and repair, Curr. Opin. Struct. Biol. 20(3) (2010) 283-294. https://doi.org/10.1016/j.sbi.2010.03.012

Hoppensteadt, F. C., Analysis and Simulation of Chaotic Systems, Spring-Verlag, New York, 2000.

Chen, D., Aubry, S., Tsironis, G. P., Breather mobility in discrete lattices, Physical Review Letters 77 (1996) 4776-4779. https://doi.org/10.1103/PhysRevLett.77.4776

Cuevas, J., Palmero, F., Archilla, J. F. R., Romero, F. R., Moving discrete breather in a Klein-Gordon chain with an impurity, J. Phys. A, 35 (2002) 10519-10530.

Aubry, S., Cretegny, T., Mobility and Reactivity of Discrete Breathers, Physica D, 119 (1998) 34-46. https://doi.org/10.1016/S0167-2789(98)00062-1

Howard, J., Linear stability of natural sympletic maps, Physics Letters A 246 (1998) 273-283. https://doi.org/10.1016/S0375-9601(98)00507-6

Cortez, H., Drigo Filho, E., Ruggiero, J. R., Breather stability in one dimensional Lattices with a symmetric Morse Potential, TEMA. Tend. Mat. Appl. Comput. 9(2) (2008) 205-212. https://doi.org/10.5540/tema.2008.09.02.0205

Cortez, H., Tese de doutorado. Modelo Dinâmico e estatístico aplicado à transição de fase. UNESP. 2009

Gutiérrez, H.C., Drigo Filho, E., Ruggiero, J.R., Gutierrez, M.C., Fuentes Rivera, L.V., Thermodynamics of DNA with “ hump” Morse potential, Eclética Quimica 41 (2016) 60-65. https://doi.org/10.26850/1678-4618eqj.v41.1.2016.p60-65

Peyrard, M., Nonlinear dynamics and statistical physics of DNA, Nonlinearity 17(2) (2004) R1-R40.

Flach, S. Gorbach, A. V., Discrete breathers-Advance in theory and applications, Physics Reports 467 (1-3) (2008) 1-116. https://doi.org/10.1016/j.physrep.2008.05.002

Forinash, K., Peyrard M., Interaction of discrete with impurity modes, Physical Review E 49 (4) (1994) 3400-3411. PMID:9961608

Cuevas, J., Palmero, F., Archilla, J. F. R., Moving discrete breathers in a Klein-Gordon chain with an impurity, Journal of Physics 35(49) (2002) 10519-10530.

Alvarez, A., Romero, F., Breather trapping and breather transmission in a DNA model with an interface, Eur. Phys. J. B51 (2006) 119-130. https://doi.org/10.1140/epjb/e2006-00191-0

Alvarez. A., Moving Breathers collisions in the Peyrard Bishop DNA model. International Conference on Complex Science, 2009.

Thing, J., Peyrard, M., Effective breather trapping mechanism for DNA transcription, Physics Rev. 53(1) (1996) 1011-1020. PMID: 9964336

Bang, O., Peyrard, M., High order breather solutions to a discrete nonlinear Klein-Gordon model, Physica D 81(1-2) (1995) 9-22. https://doi.org/10.1016/0167-2789(94)00202-2

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2017 Eclética Química Journal

Metrics

PDF views
361
Dec 31 '17Jan 01 '18Jan 04 '18Jan 07 '18Jan 10 '18Jan 13 '18Jan 16 '18Jan 19 '18Jan 22 '18Jan 25 '18Jan 28 '186.0
| |
Other format views
18
Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202610
|