Photocatalytic degradation of methylene blue using TiO2 supported in ceramic material

Main Article Content

Raul Fernando de Mello Peters
Pâmela Andréa Mantey dos Santos
Tiele Caprioli Machado
Diosnel Antonio Rodriguez Lopez
Ênio Leandro Machado
Adriane de Assis Lawisch Rodriguez

Abstract

The present work evaluates the use of ceramic material, produced with the aid of industrial waste through the Gel-Casting method, as a support for catalysts in the photocatalytic degradation of Methylene Blue. The analysis was carried out in a reactor containing UVC lamps through batch processing. The results show that the reaction of photocatalytic degradation of the dye presents pseudo-first order kinetics, with values of degradation between 60 and 70 %. The study evaluated the deactivation of the catalysts synthesized and supported in the ceramic material. In this case, it was observed that the larger the mass of deposited catalyst on the ceramic support, the longer the lifespan of the sample, since a larger mass takes longer to deactivate.

Metrics

Metrics Loading ...

Article Details

How to Cite
de Mello Peters, R. F., Mantey dos Santos, P. A., Machado, T. C., Rodriguez Lopez, D. A., Machado, Ênio L., & Lawisch Rodriguez, A. de A. (2018). Photocatalytic degradation of methylene blue using TiO2 supported in ceramic material. Eclética Química, 43(1), 26–32. https://doi.org/10.26850/1678-4618eqj.v43.1.2018.p26-32
Section
Original articles
Author Biographies

Raul Fernando de Mello Peters, Universidade de Santa Cruz do Sul

Programa de Pós-Graduação em Tecnologia Ambiental

Pâmela Andréa Mantey dos Santos, Universidade de Santa Cruz do Sul

Programa de Pós-Graduação em Tecnologia Ambiental

Tiele Caprioli Machado, Universidade de Santa Cruz do Sul

Departamento de Engenharia, Arquitetura e Ciências Agrárias

Diosnel Antonio Rodriguez Lopez, Universidade de Santa Cruz do Sul

Departamento de Engenharia, Arquitetura e Ciências Agrárias

Ênio Leandro Machado, Universidade de Santa Cruz do Sul

Departamento de Química e Física

Adriane de Assis Lawisch Rodriguez, Universidade de Santa Cruz do Sul

Departamento de Engenharia, Arquitetura e Ciências Agrárias.

References

Galindo, C., Jacques, P., Kalt, A., Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations, Chemosphere, 45 (2001) 997-1005. https://doi.org/10.1016/S0045-6535(01)00118-7.

Mourão, H., Mendonça, V. R., Malagutti, A. R., Ribeiro, C., Nanoestruturas em fotocatálise: uma revisão sobre estratégias de síntese de fotocatalisadores em escala nanométrica, Quím. Nova, 32 (2009) 2181-2190. https://doi.org/10.1590/S0100-40422009000800032.

Wawrzkiewicz, M., Wiśniewska, M., Gun'ko, V. M., Zarko, V. I., Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide, Powder Technol. 278 (2015) 306-315. https://doi.org/10.1016/j.powtec.2015.03.035.

Rosales, E., Pazos, M., Sanromán, M. A., Comparative efficiencies of the decolourisation of leather dyes by enzymatic and electrochemical treatments, Desalination, 278 (2011) 312-317. https://doi.org/10.1016/j.desal.2011.05.041.

Su, C.-C., Pukdee-Asa, M., Ratanatamskul, C., Lu, M.-C., Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton's reagent using fluidized-bed reactor, Desalination, 278 (2011) 211-218. https://doi.org/10.1016/j.desal.2011.05.022.

Chatterjee, D., Dasgupta, S., Visible light induced photocatalytic degradation of organic pollutants, J. Photoch. Photobio. C 6 (2005) 186-205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001.

El-Roz, M., Haidar, Z., Lakiss, L., Toufaily, J., Thibault-Starzyk, F., Immobilization of TiO2 nanoparticles on natural Luffa cylindrica fibers for photocatalytic applications, RSC Adv. 3 (2013) 3438-3445. https://doi.org/10.1039/C2RA22438K.

Vargová, M., Plesch, G., Vogt, U. F., Zahoran, M., Gorbár, M., Jesenák, K., TiO2 thick films supported on reticulated macroporous Al2O3 foams and their photoactivity in phenol mineralization, Appl. Surf. Sci. 257 (2011) 4678-4684. https://doi.org/10.1016/j.apsusc.2010.12.121.

Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann J.-M., Photocatalytic degradation pathway of methylene blue in water, Appl. Catal. B-Environ. 31 (2001) 145-157. https://doi.org/10.1016/S0926-3373(00)00276-9.

Johnson, C. K., Ortep, II, Oak Ridge National Laboratory, Oak Ridge, TN, (1976).

Sifontes, A. B., Urbina, M., Fajardo, F., Melo, L., García, L., Mediavilla, M., Carrión, N., Brito, J. L., Hernández, P., Solano, R., Mejias, G., & Quintero, A. Preparation of gamma-alumina foams of high surface area employing the polyurethane sponge replica method. Latin Ame Appl Res. 40 (2010) 185-191. Available from: http://www.scielo.org.ar/scielo.php?pid=S0327-07932010000200013&script=sci_arttext&tlng=pt.

Menezes, R. R., Neves, G. A., Ferreira, H. C., O estado da arte sobre o uso de resíduos como matérias-primas cerâmicas alternativas, Rev. Bras. Eng. Agr. Amb. 6 (2002) 303-313. https://doi.org/10.1590/S1415-43662002000200020.

Xu, C., Rangaiah, G. P., Zhao, X. S., Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study, Ind. Eng. Chem. Res., 53 (2014) 14641-14649. https://doi.org/10.1021/ie502367x.

Lan, Y., Lu, Y., Ren, Z., Mini review on photocatalysis of titanium dioxide nanoparticles and their solar applications, Nano Energy, 2 (2013) 1031-1045. https://doi.org/10.1016/j.nanoen.2013.04.002.

Fogler, H. S., Elementos de engenharia das reações químicas: Comsol Multiphysics, LTC2009.

Rodrigues, M. M., Preparação e caracterização de fotocatalisadores imobilizados em vidro, (2007). Available from: http://hdl.handle.net/10183/35972.