Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion

Main Article Content

Paulo Roberto Nagipe da Silva
Ana Brígida Soares

Abstract

The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it’s possible to obtain catalysts with different BET surface areas, of 33-44 m2/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.

Metrics

Metrics Loading ...

Article Details

How to Cite
da Silva, P. R. N., & Soares, A. B. (2009). Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion. Eclética Química, 34(1), 31–38. https://doi.org/10.26850/1678-4618eqj.v34.1.2009.p31-38
Section
Original articles

References

T. V. Choudhary, S. Banerjee, V. R. Choudhary. Appl. Catal. A. 234 (2002)

R. J. H. Voorhoeve, Advanced Materials in Catalysis (H. H. Burton and R. L. Garten, Eds.), p. 127. Academic Press, New York, 1977.

] S. Irusta, M.P.Pina, M. Melendez, J. Santamaria, Catal. Lett., 54 (1998) 69.

L.G. Tejuca, J.L.G. Fierro, Catal. Rev., 34 (1992) 431.

G. Sarcco, I. Cerni, V. Specchia, R. Accornero, Chem. Eng., Sci., 54 (1998) 3599.

K. Poplawski, J. Lichtenberger, F. J. Keil, K. Schnitzlen, M. D. Amiridis. Catal. Today, 62 (2000) 329.

M. A. Peña, J.L.G. Fierro, Chem. Rev., 101 (2001) 1981.

V. Szabo, M. Bassir, J. E. Gallot, A. Van Neste, S. Kaliaguine, Appl. Catal. B 42 (2003) 265.

V. Blausin-Aubé, J. Belkouch, L. Monceaux, Appl. Catal. B, 43 (2003) 175.

K.R. Barnard, K. Foger, T.W. Turney, R.D. Williams, J. catal., (1990) 265.

K. Vidyasagar, J. Gopalakrishnan, C.N.R. Rao, Sol. State Chem., 58 (1985) 29.

R.A. Dombro, W. Kirch, Eur. Pat. Application, 110 (1984) 78.

S. Kaliaguine, S. Van Neste, A.V. Szabo, J.E. Gallot, Bassir, M.R. Muzychuk, Appl. Catal. A: Gen., 209 (2001) 345.

S. Varma, B.N. Wani, N.M. Gupta, Appl. Catal. A: Gen., 205 (2001) 295.

Z. Zhao, X. Yang, Y. Wu, Appl. Catal. B, 8 (1996) 281.

S. M. Lima and J. M. Assaf, Anais do 12º Congresso Brasileiro de Catálise, Angra dos Reis, Brasil 2003, 642.

J. Mizusaki, M. Mori, H. Takai, Y. Yonemura, H. Minamiue, H. Tagawa, M. Dokiya, H. Inaba, K. Naraya, T. Sasamoto, T. Hashimoto, Sol. State ion., 129 (2000) 163.

J. Shu, S. Kaliaguine, Appl. Catal. B, 16 (1998) 303.

D. Kivana, J. Delval, J. Kirchnerova, J. Chaouki, Appl.

Catal. A: Gen., 165 (1997) 171.

M. O’Connell, A.K. Norman, C.F. Hüttermann, M.A. Morris, Catal. Tod., 47 (1999) 123-132p.

R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, J. Mol. Catal.A: Chem., 197 (2003) 147.

H. Tagushi, A. Sugita, M. Nagao, J. Sol. State Chem., 119 (1995) 164.

J. Guo, H. Lou, Y. Zhu, X. Zheng, Mat. Letters, 57 (2003)

L.G. Tejuca, J. L Fierro, J.M.D. Tascón, Adv. Catal., 36

(1989) 237.